

Decision-Making in Data Streams under Limited Feedback

Marco Heyden

Doctoral Defense | 13.02.2025

www.kit.edu

Decision maker

• 00000 0 000000 000000000 0	Introduction ●○○○○○○○	ABCD 000000	PLASTIC	ω-UCB 00000000000	Conclusions o
-------------------------------------	--------------------------	----------------	---------	----------------------	------------------

Decision maker

Environment

 Introduction
 ABCD

 ●○○○○○○○○
 ○○○○○○○

PLASTIC 000000 ω-UCB 00000000000000 Conclusions o

- Decision maker is responsible for selecting ads
- Decision: which ad to show to users

Introduction

- Information: none / user information (e.g., age, gender)
- Feedback: conversions, advertising costs

- Decision maker is responsible for selecting ads
- Decision: which ad to show to users

Introduction

- Information: none / user information (e.g., age, gender)
- Feedback: conversions, advertising costs

- Decision maker is responsible for selecting ads
- Decision: which ad to show to users

Introduction

- Information: none / user information (e.g., age, gender)
- Feedback: conversions, advertising costs

- Decision maker is responsible for selecting ads
- Decision: which ad to show to users

Introduction

- Information: none / user information (e.g., age, gender)
- Feedback: conversions, advertising costs

- Decision maker is responsible for smooth operation of biofuel production plant
- Decision: stop the plant or continue
- Information: sensor readings (vibration, heat, pressure, chemical compounds)
- Feedback: Produced biofuel is of expected quality

ABCD w-UCB Conclusions Introduction PLASTIC 0000000

- Decision maker is responsible for smooth operation of biofuel production plant
- Decision: stop the plant or continue
- Information: sensor readings (vibration, heat, pressure, chemical compounds)
- Feedback: Produced biofuel is of expected quality

ABCD w-UCB Conclusions Introduction PLASTIC 0000000

- Decision maker is responsible for smooth operation of biofuel production plant
- Decision: stop the plant or continue
- Information: sensor readings (vibration, heat, pressure, chemical compounds)
- Feedback: Produced biofuel is of expected quality

Introduction	ABCD	PLASTIC	ω-UCB	Conclusions
0000000	000000	000000	00000000000	0

- Decision maker is responsible for smooth operation of biofuel production plant
- Decision: stop the plant or continue
- Information: sensor readings (vibration, heat, pressure, chemical compounds)
- Feedback: Produced biofuel is of expected quality

Decision-Making Decision support systems

- Human decision-making is prone to errors and bias [TK74]
- ⇒ Use decision support systems (DSS) to guide the decision maker

Introduction	ABCD	PLASTIC	ω-UCB	Conclusions
0000000	000000	000000	0000000000	0

Decision-Making Decision support systems

- Human decision-making is prone to errors and bias [TK74]
- \Rightarrow Use decision support systems (DSS) to guide the decision maker

Introduction	ABCD	PLASTIC	<i>ω-</i> UCB	Conclusions
	000000	000000	0000000000	o

Decision-Making Decision support systems

- Human decision-making is prone to errors and bias [TK74]
- \Rightarrow Use decision support systems (DSS) to guide the decision maker

Introduction

Traditional process:

- 1. Collect data
- 2. Apply supervised learning

Challenges:

- Sequential data: New data only becomes available over time
- Dynamic environments change over time, e.g., due to wear and tear or shifting user preferences

 \Rightarrow Main drivers of research on data streams [Bif+18]

Introduction	ABCD 000000	PLASTIC 000000	ω-UCB 00000000000	Conclusions
00000000	000000	000000	00000000000	0

Traditional process:

- 1. Collect data
- 2. Apply supervised learning

Challenges:

- Sequential data: New data only becomes available over time
- Dynamic environments change over time, e.g., due to wear and tear or shifting user preferences

 \Rightarrow Main drivers of research on data streams [Bif+18]

Introduction	ABCD	PLASTIC	w-LICB	Conclusions
00000000	000000	000000	00000000000	0

Traditional process:

- 1. Collect data
- 2. Apply supervised learning

Challenges:

- Sequential data: New data only becomes available over time
- Dynamic environments change over time, e.g., due to wear and tear or shifting user preferences

Traditional process:

- 1. Collect data
- 2. Apply supervised learning

Challenges:

- Sequential data: New data only becomes available over time
- Dynamic environments change over time, e.g., due to wear and tear or shifting user preferences

\Rightarrow Main drivers of research on data streams [Bif+18]

Introduction	ABCD	PLASTIC	w-UCB	Conclusions
00000000	000000	000000	0000000000	0

Data Stream

A *data stream S* is a possibly never-ending sequence of observations $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_t, y_t), \dots\}$ drawn from an ordered set of data generating distributions $\{S_{\tau_1, \tau_2}, S_{\tau_2, \tau_3}, S_{\tau_3, \tau_4}, \dots\}$, called *concepts*, such that

 $\forall t \in [\tau_i, \tau_{i+1}) : (\mathbf{x}_t, y_t) \stackrel{iid}{\sim} S_{\tau_i, \tau_{i+1}}.$

ML algorithms for data streams should

- Inspect each observation only once
- Use limited amount of time and memory
- Adapt to concept drift (change from one concept to another)

Introduction	ABCD	PLASTIC	ω-UCB	Conclusions
00000000	000000		00000000000	o

Data Stream

A *data stream* S is a possibly never-ending sequence of observations $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_t, y_t), \dots\}$ drawn from an ordered set of data generating distributions $\{S_{\tau_1, \tau_2}, S_{\tau_2, \tau_3}, S_{\tau_3, \tau_4}, \dots\}$, called *concepts*, such that

 $\forall t \in [\tau_i, \tau_{i+1}) : (\mathbf{x}_t, y_t) \stackrel{iid}{\sim} S_{\tau_i, \tau_{i+1}}.$

ML algorithms for data streams should

- Inspect each observation only once
- Use limited amount of time and memory
- Adapt to concept drift (change from one concept to another)

Introduction	ABCD	PLASTIC	ω-UCB	Conclusions
00000000	000000		00000000000	o

Data Stream

A *data stream* S is a possibly never-ending sequence of observations $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_t, y_t), \dots\}$ drawn from an ordered set of data generating distributions $\{S_{\tau_1, \tau_2}, S_{\tau_2, \tau_3}, S_{\tau_3, \tau_4}, \dots\}$, called *concepts*, such that

$$\forall t \in [\tau_i, \tau_{i+1}) : (\mathbf{x}_t, \mathbf{y}_t) \stackrel{iid}{\sim} S_{\tau_i, \tau_{i+1}}.$$

- Inspect each observation only once
- Use limited amount of time and memory
- Adapt to concept drift (change from one concept to another)

Introduction ABCD PLASTIC 000000000000000000000000000000000000	ω-UCB 00000000000	Conclusions o
--	----------------------	------------------

Data Stream

A *data stream* S is a possibly never-ending sequence of observations $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_t, y_t), \dots\}$ drawn from an ordered set of data generating distributions $\{S_{\tau_1, \tau_2}, S_{\tau_2, \tau_3}, S_{\tau_3, \tau_4}, \dots\}$, called *concepts*, such that

$$\forall t \in [\tau_i, \tau_{i+1}) : (\mathbf{x}_t, \mathbf{y}_t) \stackrel{iid}{\sim} \mathcal{S}_{\tau_i, \tau_{i+1}}.$$

- Inspect each observation only once
- Use limited amount of time and memory
- Adapt to concept drift (change from one concept to another)

IntroductionABCDPLASTICω-UCBConclusion00000000000000000000000000000000000	ons
---	-----

Data Stream

A *data stream* S is a possibly never-ending sequence of observations $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_t, y_t), \dots\}$ drawn from an ordered set of data generating distributions $\{S_{\tau_1, \tau_2}, S_{\tau_2, \tau_3}, S_{\tau_3, \tau_4}, \dots\}$, called *concepts*, such that

$$\forall t \in [\tau_i, \tau_{i+1}) : (\mathbf{x}_t, \mathbf{y}_t) \stackrel{iid}{\sim} \mathcal{S}_{\tau_i, \tau_{i+1}}.$$

- Inspect each observation only once
- Use limited amount of time and memory
- Adapt to concept drift (change from one concept to another)

Introduction ABCD PLASTIC ω-UCB Co 000000000000000000000000000000000000	nclusions
---	-----------

Data Stream

A *data stream* S is a possibly never-ending sequence of observations $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_t, y_t), \dots\}$ drawn from an ordered set of data generating distributions $\{S_{\tau_1, \tau_2}, S_{\tau_2, \tau_3}, S_{\tau_3, \tau_4}, \dots\}$, called *concepts*, such that

$$\forall t \in [\tau_i, \tau_{i+1}) : (\mathbf{x}_t, \mathbf{y}_t) \stackrel{iid}{\sim} \mathcal{S}_{\tau_i, \tau_{i+1}}.$$

- Inspect each observation only once
- Use limited amount of time and memory
- Adapt to concept drift (change from one concept to another)

Introduction ABCD PLASTIC ω-UCB Conclus 000000000 0000000 000000000000000000000000000000000000	usions
--	--------

- Most algorithms for data streams assume plenty and cheap feedback
- Many applications violate these assumptions

Introduction	ABCD	PLASTIC	ω-UCB	Conclusions
○○○○○●○	000000		00000000000	o

Karlsruhe Institute of Technolog

- Most algorithms for data streams assume plenty and cheap feedback
- Many applications violate these assumptions

Introduction	ABCD 000000	PLASTIC 000000	ω-UCB 00000000000	Conclusions o

- Most algorithms for data streams assume plenty and cheap feedback
- Many applications violate these assumptions

Decision-based feedback

 Feedback only available for the chosen decision

Introduction	ABCD	PLASTIC	ω-UCB	Conclusions
0000000	000000		00000000000	o

- Most algorithms for data streams assume plenty and cheap feedback
- Many applications violate these assumptions

Decision-based feedback

Introduction

0000000

• Feedback only available for the chosen decision

Observation-based feedback

- Feedback is only available for some observations
- Extreme case: unavailable feedback

w-UCB

PLASTIC

ABCD

Conclusions

- Most algorithms for data streams assume plenty and cheap feedback
- Many applications violate these assumptions

Decision-based feedback

• Feedback only available for the chosen decision

Observation-based feedback

- Feedback is only available for some observations
- Extreme case: unavailable feedback

Costly feedback

 Obtaining feedback comes at a cost

Introduction	ABCD	PLASTIC	<i>ω</i> -UCB	Conclusions
00000000	000000	000000	000000000000	0

This Dissertation Addresses limited feedback from three perspectives

Limited Feedback

Introduction

ABCD 000000 PLASTIC 000000 ω-UCB 00000000000 Conclusions

This Dissertation Addresses limited feedback from three perspectives

Introduction	ABCD 000000	PLASTIC	ω-UCB 0000000000	Conclusions o
This Dissertation Addresses limited feedback from three perspectives

Conclusions

This Dissertation Addresses limited feedback from three perspectives

Next up Part III — ABCD

Contribution Feedback generation in complex systems

Research question:

How to guide decision-making when no direct feedback from the environment is available?

Solution: Let the algorithm generate feedback!

Technical contributions:

- ABCD, a change detection and characterization algorithm for high-dimensional data streams
 - "When", "where", and "how severely"
- Formalization of change, change subspace, and change severity
- Stream aggregates for adaptive windows

Introduction	ABCD	PLASTIC	ω-UCB	Conclusions
00000000	••••••		00000000000	o

Contribution Feedback generation in complex systems

Research question:

How to guide decision-making when no direct feedback from the environment is available?

Solution: Let the algorithm generate feedback!

Technical contributions:

- ABCD, a change detection and characterization algorithm for high-dimensional data streams
 - "When", "where", and "how severely"
- Formalization of change, change subspace, and change severity
- Stream aggregates for adaptive windows

Introduction	ABCD	PLASTIC	ω-UCB	Conclusions
0000000	o●oooo		00000000000	o

12/34 13.02.2025 Decision-Making in Data Streams under Limited Feedback

score

change score =
$$2 \exp\left\{-\frac{n_1(\kappa\varepsilon)^2}{2(\sigma_1^2 + \frac{1}{3}\kappa M\varepsilon)}\right\} + 2 \exp\left\{-\frac{n_2((1-\kappa)\varepsilon)^2}{2(\sigma_2^2 + \frac{1}{3}(1-\kappa)M\varepsilon)}\right\}$$

H0: "two windows have the same mean"

12/34 13.02.2025 Decision-Making in Data Streams under Limited Feedback

Chair for Information Systems

High-level Algorithm Is change significant?

High-level Algorithm Change subspace and severity

After detecting a change:

Introduction

- 1. Identify dimensions that changed the most
 - Apply change score to each dimension
- 2. Quantify change severity
 - Normalize loss in the change subspace

High-level Algorithm Change subspace and severity

After detecting a change:

Introduction

- 1. Identify dimensions that changed the most
 - Apply change score to each dimension
- 2. Quantify change severity
 - Normalize loss in the change subspace

Experiments Change detection results

Insights:

- 1. Precision is very high
- 2. Lower sensitivity than competitors
- $\Rightarrow\,$ Which method to choose depends on the cost of FP and FN

BDD

D3

1.0

0.5

0.0

1.0

0.5

0.0

ABCD (88) (KPC3) (PC3) Adwink

IKS WATCH

Experiments Change subspace and severity

Insights:

Introduction

- 1. Both metrics are higher than for competitors
- 2. However, there is still room for improvement
- \Rightarrow First strides towards drift characterization

Accuracy at detecting change subspace

 000000
 00000
 00000

 15/34
 13.02.2025
 Decision-Making in Data Streams under Limited Feedback

ABCD

PLASTIC

Next up Part II — PLASTIC

Contribution Feedback-efficient incremental decision tree mining

Research question:

How to improve feedback efficiency of widely used algorithms for decision support systems?

Solution: Improve incremental decision trees!

Technical contributions:

- PLASTIC, a feedback-efficient incremental decision tree algorithm
- Decision tree restructuring based on the concept of plasticity
- PLASTIC-A, a change-adaptive version of PLASTIC

Introduction	ABCD 000000	PLASTIC •••••	ω-UCB 00000000000	Conclusions

Contribution Feedback-efficient incremental decision tree mining

Research question:

How to improve feedback efficiency of widely used algorithms for decision support systems?

Solution: Improve incremental decision trees!

Technical contributions:

- PLASTIC, a feedback-efficient incremental decision tree algorithm
- Decision tree restructuring based on the concept of plasticity
- PLASTIC-A, a change-adaptive version of PLASTIC

Introduction	ABCD 000000	PLASTIC	ω-UCB	Conclusions
00000000		00000	00000000000	o

Incremental Decision Trees Foundation

Hoeffding Trees [DH00]

 Feedback-inefficient but accurate

Introduction	ABCD 000000	PLASTIC	ω-UCB 00000000000	Conclusions o

Incremental Decision Trees Foundation

18/34 13. 02. 2025 Decision-Making in Data Streams under Limited Feedback

Incremental Decision Trees Foundation

HT vs. EFDT EFDT learns faster than HT but suffers from accuracy drops

Illustrative example on synthetic data

Can we maintain EFDT's fast learning but avoid the accuracy drops?

Introduction 0000000	ABCD	ω-UCB 00000000000	Conclusions o

HT vs. EFDT EFDT learns faster than HT but suffers from accuracy drops

Illustrative example on synthetic data

Can we maintain EFDT's fast learning but avoid the accuracy drops?

20/34 13.02.2025 Decision-Making in Data Streams under Limited Feedback

Chair for Information Systems

Idea behind PLASTIC Decision tree plasticity

In the left-most branch, any instance with attribute values $\mathbf{I} = 0$ and $\mathbf{0} = 0$ will arrive at $\mathbf{0}$

• Hence, from the viewpoint of the leaf, $\blacksquare - \bullet - \circ \equiv \bullet - \blacksquare - \circ$

PLASTIC revises splits by restructuring the affected subtree

Introduction	ABCD	PLASTIC 000000	ω-UCB 00000000000	Conclusions o

13.02.2025 Decision-Making in Data Streams under Limited Feedback 20/34

ABCD

000000

Chair for Information Systems

Conclusions

Idea behind PLASTIC **Decision tree plasticity**

Introduction

• In the left-most branch, any instance with attribute values $\mathbf{I} = 0$ and $\mathbf{0} = 0$ will arrive at 0

• Hence, from the viewpoint of the leaf, $\blacksquare - \bullet - \circ \equiv \bullet - \blacksquare - \circ$

w-UCB

PLASTIC

000000

ABCD

Introduction

PLASTIC revises splits by restructuring the affected subtree

20/34 13.02.2025 Decision-Making in Data Streams under Limited Feedback

Chair for Information Systems

Conclusions

Idea behind PLASTIC Decision tree plasticity

- In the left-most branch, any instance with attribute values $\mathbf{I} = 0$ and $\mathbf{0} = 0$ will arrive at $\mathbf{0}$
- Hence, from the viewpoint of the leaf, ● ≡ ■ ○

PLASTIC

000000

w-UCB

Introduction

Restructuring avoids accuracy drops caused by subtree pruning in EFDT

Improvements in worst-case accuracy up to 50 % compared to EFDT

Introduction

- Restructuring avoids accuracy drops caused by subtree pruning in EFDT
- Improvements in worst-case accuracy up to 50 % compared to EFDT

Next up Part I — ω -UCB

Contribution Sequential decision-making under budget constraints

Research question:

How to optimize sequential decisions under budget constraints when feedback is costly and resources are limited?

Solution: Use budgeted multi-armed bandit algorithms!

Technical contributions:

- ω-UCB, a budget-aware multi-armed bandit algorithm based on asymmetric confidence intervals
- Derivation of asymmetric confidence intervals
- Theoretical analysis and empirical evaluation

Introduction	ABCD	PLASTIC	<i>ω</i> -UCB ○●000000000	Conclusions o
--------------	------	---------	------------------------------	------------------

Contribution Sequential decision-making under budget constraints

Research question:

How to optimize sequential decisions under budget constraints when feedback is costly and resources are limited?

Solution: Use budgeted multi-armed bandit algorithms!

Technical contributions:

- ω-UCB, a budget-aware multi-armed bandit algorithm based on asymmetric confidence intervals
- Derivation of asymmetric confidence intervals
- Theoretical analysis and empirical evaluation

Introduction	ABCD	PLASTIC	<i>ω</i> -UCB	Conclusions
0000000	000000	000000	○●0000000000	o

Budgeted Multi-Armed Bandits Generic algorithm

Goal: Maximize the total reward until the available budget runs out

While budget *B* not empty:

- 1. play one of K arms
- 2. observe reward and cost
- 3. adjust arm selection strategy

Introduction	ABCD 000000	PLASTIC	<i>ω-</i> UCB ○ ○●○○ ○○○○○○○	Conclusions o
--------------	-------------	---------	--	------------------

Budgeted Multi-Armed Bandits Generic algorithm

Goal: Maximize the total reward until the available budget runs out

While budget *B* not empty:

- 1. play one of K arms
- 2. observe reward and cost
- 3. adjust arm selection strategy

Introduction

• **Regret**: Difference in reward compared to the optimal strategy

Best arm = arm with highest ratio between expected rewards and costs

Best arm = arm with highest ratio between expected rewards and costs

Best arm = arm with highest ratio between expected rewards and costs

Best arm = arm with highest ratio between expected rewards and costs

Best arm = arm with highest ratio between expected rewards and costs

Problem Symmetric CIs lead to increased UCB for reward-cost ratio

PLASTIC

The UCB for the reward-cost ratio should be

- as accurate as possible (UCB > expected value)
- as tight as possible

Introduction

 \rightarrow but this is not the case in existing algorithms.

 $UCB = rac{average reward + uncertainty}{average cost - uncertainty}$

Problem Symmetric CIs lead to increased UCB for reward-cost ratio

PLASTIC

The UCB for the reward-cost ratio should be

- as accurate as possible (UCB > expected value)
- as tight as possible

Introduction

 \rightarrow but this is not the case in existing algorithms.

 $UCB = \frac{average reward + uncertainty}{average cost - uncertainty}$

Idea Use asymmetric confidence intervals instead

The UCB for the reward-cost ratio should be

- as accurate as possible (UCB > expected value)
- as tight as possible
- \rightarrow but this is not the case in existing algorithms.

 $UCB = rac{average reward + uncertainty}{average cost - uncertainty}$

Our core idea:

Introduction

Use asymmetric confidence intervals

Tighten confidence intervals when variance is low (our η -parameter, $\eta = 1 \rightarrow$ Bernoulli)

PLASTIC

Idea Use asymmetric confidence intervals instead

The UCB for the reward-cost ratio should be

- as accurate as possible (UCB > expected value)
- as tight as possible
- \rightarrow but this is not the case in existing algorithms.

 $UCB = rac{average reward + uncertainty}{average cost - uncertainty}$

Our core idea:

Introduction

- Use asymmetric confidence intervals
- Tighten confidence intervals when variance is low (our η -parameter, $\eta = 1 \rightarrow$ Bernoulli)

PLASTIC

1. play one of K arms

Our Approach ω -UCB algorithm

- UCB sampling with asymmetric confidence intervals
- 2. observe reward and cost
 - Track mean and **variance** $\Rightarrow \omega^*$ -UCB
- 3. adjust arm selection strategy
 - Increase confidence intervals over time according to $\alpha(t) = 1 \sqrt{1 t^{-\rho}}$

Introduction	ABCD	PLASTIC	<i>ω</i> -UCB	Conclusions
0000000	000000	000000	00000000000	0

1. play one of K arms

Our Approach ω -UCB algorithm

- UCB sampling with asymmetric confidence intervals
- 2. observe reward and cost
 - Track mean and **variance** $\Rightarrow \omega^*$ -UCB
- 3. adjust arm selection strategy
 - Increase confidence intervals over time according to $\alpha(t) = 1 \sqrt{1 t^{-\rho}}$

Introduction	ABCD	PLASTIC	ω-UCB	Conclusions
0000000	000000	000000	00000000000	0

1. play one of K arms

Our Approach ω -UCB algorithm

- UCB sampling with asymmetric confidence intervals
- 2. observe reward and cost
 - Track mean and **variance** $\Rightarrow \omega^*$ -UCB
- 3. adjust arm selection strategy
 - Increase confidence intervals over time according to $\alpha(t) = 1 \sqrt{1 t^{-\rho}}$

Introduction	ABCD	PLASTIC	<i>ω</i> -UCB	Conclusions
0000000	000000	000000	00000000000	0

1. play one of K arms

Our Approach ω -UCB algorithm

- UCB sampling with asymmetric confidence intervals
- 2. observe reward and cost
 - Track mean and **variance** $\Rightarrow \omega^*$ -UCB
- 3. adjust arm selection strategy
 - Increase confidence intervals over time according to $\alpha(t) = 1 \sqrt{1 t^{-\rho}}$

Introduction	ABCD 000000	PLASTIC 000000	<i>ω</i> -UCB 000000000000	Conclusions
0000000	000000	000000	000000000000	0

$\begin{array}{l} \omega \text{-UCB} \\ \text{Time-adaptive confidence interval} \end{array}$

Time-adaptive confidence intervals prevent elimination of best arm

- Regret = $\sum_{\text{arms } k}$ regret increment \cdot number of plays until T_B
- T_B : number of plays until budget *B* is empty (\leftarrow a random variable!)

Introduction	ABCD	PLASTIC	<i>ω</i> -UCB	Conclusions
00000000	000000	000000	○○○○○○●●●●●	o

Introduction

- Regret = $\sum_{\text{arms } k}$ regret increment \cdot number of plays until T_B
- T_B : number of plays until budget *B* is empty (\leftarrow a random variable!)

- Regret = $\sum_{\text{arms } k}$ regret increment \cdot number of plays until T_B
- T_B : number of plays until budget *B* is empty (\leftarrow a random variable!)

- Regret = $\sum_{\text{arms } k}$ regret increment \cdot number of plays until T_B
- T_B : number of plays until budget *B* is empty (\leftarrow a random variable!)

Introduction	ABCD	PLASTIC	<i>ω</i> -UCB	Conclusions
0000000	000000	000000	000000000000000000000000000000000000000	0

- Regret = $\sum_{\text{arms } k}$ regret increment \cdot number of plays until T_B
- T_B : number of plays until budget *B* is empty (\leftarrow a random variable!)

- Regret = $\sum_{\text{arms } k}$ regret increment \cdot number of plays until T_B
- T_B : number of plays until budget *B* is empty (\leftarrow a random variable!)

- Regret = $\sum_{\text{arms } k}$ regret increment \cdot number of plays until T_B
- T_B : number of plays until budget *B* is empty (\leftarrow a random variable!)

Proof of sub-linear regret Results (I)

Theorem (Number of suboptimal plays)

With ω -UCB, the expected number of plays of a suboptimal arm k > 1 before time step τ , $\mathbb{E}[n_k(\tau)]$, is upper-bounded by:

$$\mathbb{E}[n_k(\tau)] \leq 1 + n_k^*(\tau) + \xi(\tau, \rho),$$

where

$$\xi(\tau,\rho) = (\tau - K) \left(2 - \sqrt{1 - \tau^{-\rho}}\right) - \sum_{\mathsf{t}=\mathsf{K}+1}^{\tau} \sqrt{1 - t^{-\rho}},$$
$$\mathbf{h}_{k}^{*}(\tau) = \frac{8\rho \log \tau}{\delta_{k}^{2}} \max\left\{\frac{\eta_{k}^{r} \mu_{k}^{r}}{1 - \mu_{k}^{r}}, \frac{\eta_{k}^{c} (1 - \mu_{k}^{c})}{\mu_{k}^{c}}\right\}, \quad \delta_{k} = \frac{\Delta_{k}}{\Delta_{k} + \frac{1}{\mu_{k}^{c}}}$$

and *K* and Δ_k are defined as before.

Proof of sub-linear regret Regret illustration for 2-armed bandit

Hyperparameter ρ controlls amount of exploration

• $\rho > 1$ leads to logarithmic growth

Introduction

• $\rho \leq$ 1 leads to super-logarithmic growth

Proof of sub-linear regret Regret illustration for 2-armed bandit

Hyperparameter ρ controlls amount of exploration

• $\rho > 1$ leads to logarithmic growth

Introduction

• $\rho \leq$ 1 leads to super-logarithmic growth

Experiments

On the right:

Regret over time

Insights:

- 1. ho= 1 is too conservative in practice
- 2. Estimating η as in ω^* -UCB reduces regret
- $\Rightarrow~$ "Use ω^{*} -UCB with ho= 1/4!'

Introduction	ABCD	PLASTIC	<i>ω</i> -UCB	Conclusions
00000000	000000	000000	○○○○○○○○ ○○ ●	o

Experiments

On the right:

Regret over time

Insights:

- 1. $\rho = 1$ is too conservative in practice
- 2. Estimating η as in ω^* -UCB reduces regret
- $\Rightarrow~$ "Use ω^{*} -UCB with ho= 1/4!"

Introduction 00000000	ABCD	PLASTIC	<i>ω</i> -UCB ○○○○○○○○○○●	Conclusions o
--------------------------	-------------	---------	------------------------------	------------------

ABCD PLASTIC

Chair for Information Systems

Experiments

On the right:

Regret over time

Insights:

Introduction

- 1. $\rho = 1$ is too conservative in practice
- 2. Estimating η as in $\omega^*\text{-UCB}$ reduces regret
- \Rightarrow "Use ω^* -UCB with ho= 1/4!"

10 00 0005 Decision Matrice in Parts Other and and instruct Facelly of

PLASTIC

ABCD

Chair for Information Systems

Experiments

On the right:

Regret over time

Insights:

Introduction

- 1. $\rho = 1$ is too conservative in practice
- 2. Estimating η as in $\omega^*\text{-UCB}$ reduces regret
- \Rightarrow "Use ω^* -UCB with $\rho = 1/4!$ "

Conclusions

Most existing algorithms for decision making in data streams assume **plenty and cheap feedback**. My dissertation addresses limited feedback from **three perspectives**:

- Costly decision-based feedback $\Rightarrow \omega$ -UCB (Sequential decision-making under budget constraints) [Hey+24b]
- Unavailable feedback ⇒ ABCD (characterizing change in high-dimensional data streams) [Hey+24a]

Additional materials

- Complete source code available on GitHub (https://github.com/heymarco)
- Released PLASTIC and ABCD as part of open-source projects (https://capymoa.org/
- Advertisement video and blog post (by Vadim Arzamasov and me) showcasing ω -UCB

Introduction	ABCD 000000	PLASTIC	ω-UCB 00000000000	Conclusions •
--------------	----------------	---------	----------------------	------------------

Conclusions

Most existing algorithms for decision making in data streams assume **plenty and cheap feedback**. My dissertation addresses limited feedback from **three perspectives**:

- Costly decision-based feedback $\Rightarrow \omega$ -UCB (Sequential decision-making under budget constraints) [Hey+24b]
- Observation-based feedback ⇒ PLASTIC (feedback-efficient incremental decision tree mining) [Hey+24c]
- Unavailable feedback ⇒ ABCD (characterizing change in high-dimensional data streams) [Hey+24a]

Additional materials

- Complete source code available on GitHub (https://github.com/heymarco)
- Released PLASTIC and ABCD as part of open-source projects (https://capymoa.org/)
- Advertisement video and blog post (by Vadim Arzamasov and me) showcasing ω -UCB

Introduction	ABCD 000000	PLASTIC	ω-UCB 00000000000	Conclusions ●
--------------	-------------	---------	----------------------	------------------

Conclusions

Most existing algorithms for decision making in data streams assume **plenty and cheap feedback**. My dissertation addresses limited feedback from **three perspectives**:

- Costly decision-based feedback $\Rightarrow \omega$ -UCB (Sequential decision-making under budget constraints) [Hey+24b]
- Observation-based feedback ⇒ PLASTIC (feedback-efficient incremental decision tree mining) [Hey+24c]
- Unavailable feedback ⇒ ABCD (characterizing change in high-dimensional data streams) [Hey+24a]

Additional materials

- Complete source code available on GitHub (https://github.com/heymarco)
- Released PLASTIC and ABCD as part of open-source projects (https://capymoa.org/)
- Advertisement video and blog post (by Vadim Arzamasov and me) showcasing ω -UCB

Introduction 0000000	ABCD	PLASTIC	<i>ω-</i> UCB 00000000000	Conclusions ●
-------------------------	------	---------	------------------------------	------------------
References I

- Albert Bifet and Ricard Gavaldà. "Adaptive learning from evolving data streams". In: IDA 2009. Vol. 5772. Springer, 2009, pp. 249–260. DOI: 10.1007/978-3-642-03915-7_22.
- [2] Albert Bifet and Ricard Gavaldà. "Learning from time-changing data with adaptive windowing". In: SDM. Minneapolis, USA: SIAM, 2007, pp. 443–448. DOI: 10.1137/1.9781611972771.42.
- [3] Albert Bifet et al. "Big data stream mining". In: Machine learning for data streams: with practical examples in MOA. The MIT Press, 2018. ISBN: 978-0-262-34604-7. URL: https://doi.org/10.7551/mitpress/10654.003.0006.
- [4] Michelangelo Ceci et al. "ECHAD: Embedding-based change detection from multivariate time series in smart grids". In: IEEE Access 8 (2020), pp. 156053–156066. DOI: 10.1109/ACCESS.2020.3019095.
- [5] T. F. Chan, G. H. Golub, and R. J. LeVeque. "Updating formulae and a pairwise algorithm for computing sample variances". In: COMPSTAT 1982. Toulouse, France: Physica, 1982, pp. 30–41. ISBN: 978-3-642-51461-6. DOI: 10.1007/978-3-642-51461-6_3.

Backup

References II

- [6] Tamraparni Dasu et al. "An information-theoretic approach to detecting changes in multi-dimensional data streams". In: *Interface 2006*. Pasadena, USA: Curran Associates, Inc., 2006. ISBN: 978-1-62276-715-1.
- [7] Pedro M. Domingos and Geoff Hulten. "Mining high-speed data streams". In: *KDD '00*. ACM, 2000, pp. 71–80.
 ISBN: 1-58113-233-6. DOI: 10.1145/347090.347107.
- [8] Pietro Ducange, Francesco Marcelloni, and Riccardo Pecori. "Fuzzy Hoeffding decision tree for data stream classification". In: 14.1 (2021), pp. 946–964. DOI: 10.2991/ijcis.d.210212.001.
- [9] Kamil Faber et al. "WATCH: Wasserstein change point detection for high-dimensional time series data". In: *BigData 2021*. IEEE, 2021, pp. 4450–4459. DOI: 10.1109/BIGDATA52589.2021.9671962.
- [10] William J. Faithfull, Juan José Rodríguez Diez, and Ludmila I. Kuncheva. "Combining univariate approaches for ensemble change detection in multivariate data". In: *Information Fusion* 45 (2019), pp. 202–214. ISSN: 1566-2535. DOI: 10.1016/j.inffus.2018.02.003.

Backup

References III

- [11] João Gama, Ricardo Fernandes, and Ricardo Rocha. "Decision trees for mining data streams". In: Intelligent Data Analysis 10.1 (2006), pp. 23–45. DOI: 10.3233/IDA-2006-10103.
- [12] Heitor Murilo Gomes et al. "A survey on semi-supervised learning for delayed partially labelled data streams". In: ACM Computing Surveys 55.4 (2023), 75:1–75:42. DOI: 10.1145/3523055.
- [13] Ömer Gözüaçik et al. "Unsupervised concept drift detection with a discriminative classifier". In: CIKM '19. Beijing, China: ACM, 2019, pp. 2365–2368. ISBN: 978-1-4503-6976-3. DOI: 10.1145/3357384.3358144.
- [14] Sattar Hashemi and Ying Yang. "Flexible decision tree for data stream classification in the presence of concept change, noise and missing values". In: *Data Mining and Knowledge Discovery* 19.1 (2009), pp. 95–131. DOI: 10.1007/s10618-009-0130-9.
- [15] Marco Heyden et al. "Adaptive Bernstein change detector for high-dimensional data streams". In: Data Mining and Knowledge Discovery 38.3 (2024), pp. 1334–1363. DOI: 10.1007/S10618-023-00999-5.

Backup

References IV

- [16] Marco Heyden et al. "Budgeted multi-armed bandits with asymmetric confidence intervals". In: KDD '24: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Barcelona, Spain: ACM, 2024, pp. 1073–1084. ISBN: 9798400704901. DOI: 10.1145/3637528.3671833.
- [17] Marco Heyden et al. "Leveraging plasticity in incremental decision trees". In: Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Vilnius, Lithuania: Springer Nature, 2024, pp. 38–54. ISBN: 978-3-031-70362-1. DOI: 10.1007/978-3-031-70362-1_3.
- [18] Geoff Hulten, Laurie Spencer, and Pedro M. Domingos. "Mining time-changing data streams". In: KDD '01. San Francisco, California, USA: ACM, 2001, pp. 97–106. ISBN: 1-58113-391-X. DOI: 10.1145/502512.502529.
- [19] Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge: Cambridge University Press, 2020. ISBN: 978-1-108-57140-1. URL: https://doi.org/10.1017/9781108571401.
- [20] Anjin Liu et al. "Regional concept drift detection and density synchronized drift adaptation". In: IJCAI-17. Melbourne, Australia: ijcai.org, 2017, pp. 2280–2286. DOI: 10.24963/ijcai.2017/317.

Backup

References V

- [21] Chaitanya Manapragada, Mahsa Salehi, and Geoffrey I. Webb. "Extremely fast Hoeffding adaptive tree". In: ICDM 2022. Orlando, FL, USA: IEEE, 2022, pp. 319–328. DOI: 10.1109/ICDM54844.2022.00042.
- [22] Chaitanya Manapragada, Geoffrey I. Webb, and Mahsa Salehi. "Extremely fast decision tree". In: KDD '18. ACM, 2018, pp. 1953–1962. ISBN: 978-1-4503-5552-0. DOI: 10.1145/3219819.3220005.
- [23] Russel Pears, Sripirakas Sakthithasan, and Yun Sing Koh. "Detecting concept change in dynamic data streams a sequential approach based on reservoir sampling". In: *Machine Learning* 97.3 (2014), pp. 259–293. ISSN: 1573-0565. DOI: 10.1007/s10994-013-5433-9.
- [24] Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby. "New options for Hoeffding trees". In: Advances in Artificial Intelligence. Al 2007. Springer, 2007, pp. 90–99. ISBN: 978-3-540-76928-6. DOI: 10.1007/978-3-540-76928-6_11.

Backup

References VI

- [25] Abdulhakim A. Qahtan et al. "A PCA-based change detection framework for multidimensional data streams: change detection in multidimensional data streams". In: *KDD '15*. Sydney, Australia: ACM, Aug. 2015, pp. 935–944. ISBN: 978-1-4503-3664-2. DOI: 10.1145/2783258.2783359.
- [26] Denis Moreira dos Reis et al. "Fast unsupervised online drift detection using incremental Kolmogorov-Smirnov test". In: KDD '16. San Francisco, California, USA: ACM, 2016, pp. 1545–1554. ISBN: 978-1-4503-4232-2. DOI: 10.1145/2939672.2939836.
- [27] Leszek Rutkowski et al. "A new method for data stream mining based on the misclassification error". In: IEEE Transactions on Neural Networks and Learning Systems 26.5 (2015), pp. 1048–1059. DOI: 10.1109/TNNLS.2014.2333557.
- [28] Leszek Rutkowski et al. "Decision trees for mining data streams based on the Gaussian approximation". In: *IEEE Transactions on Knowledge and Data Engineering* 26.1 (2014), pp. 108–119. DOI: 10.1109/TKDE.2013.34.

Backup

References VII

- [29] Leszek Rutkowski et al. "Decision trees for mining data streams based on the McDiarmid's bound". In: IEEE Transactions on Knowledge and Data Engineering 25.6 (2013), pp. 1272–1279. DOI: 10.1109/TKDE.2012.66.
- [30] Leszek Rutkowski et al. "The CART decision tree for mining data streams". In: Information Sciences 266 (2014), pp. 1–15. ISSN: 0020-0255. DOI: 10.1016/j.ins.2013.12.060.
- [31] Vinícius M. A. de Souza, Farhan Asif Chowdhury, and Abdullah Mueen. "Unsupervised drift detection on high-speed data streams". In: *BigData 2020*. Atlanta, GA, USA: IEEE, 2020, pp. 102–111. DOI: 10.1109/BIGDATA50022.2020.9377880.
- [32] Vinícius M. A. de Souza et al. "Efficient unsupervised drift detector for fast and high-dimensional data streams". In: *Knowl. Inf. Syst.* 63.6 (2021), pp. 1497–1527.
- [33] Amos Tversky and Daniel Kahneman. "Judgment under uncertainty: Heuristics and biases". In: Science 185.4157 (1974), pp. 1124–1131. DOI: 10.1126/science.185.4157.1124.

Backup

References VIII

- [34] B. P. Welford. "Note on a Method for Calculating Corrected Sums of Squares and Products". In: *Technometrics* (1962), pp. 419–420. DOI: 10.1080/00401706.1962.10490022.
- [35] Edwin B. Wilson. "Probable inference, the law of succession, and statistical inference". In: Journal of the American Statistical Association 22.158 (1927), pp. 209–212. DOI: doi.org/10.2307/2276774.
- [36] Xindong Wu, Pei-Pei Li, and Xuegang Hu. "Learning from concept drifting data streams with unlabeled data". In: *Neurocomputing* 92 (2012), pp. 145–155. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2011.08.041.
- [37] Yingce Xia et al. "Finite budget analysis of multi-armed bandit problems". In: Neurocomputing 258 (2017), pp. 13–29. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2016.12.079.

Backup

- 1. Contextual budgeted multi-armed bandits
 - So far, ω -UCB does not use context information
 - Context information can improve regret drastically
 - Example:
 - Use Gaussian process (GP) to model context-reward and context-cost relationship
 - Estimate parameters of confidence interval based on GP
- 2. Adapt ω -UCB to non-stationary environments
 - Monitor statistics for each arm
 - Use ABCD's adaptive windows!
 - Adjust exploration strategy
 - Analyze regret theoretically

Backup

Future Work PLASTIC

- 1. Extend PLASTIC to the delayed-feedback setting
 - Feedback usually arrives with a delay
 - Use self-training to bridge the delay period
 - Update tree with true feedback once available
 - Restructuring is beneficial for this!
- 2. Improve change adaptability of PLASTIC-A
 - Current change-adaptation procedure is rather simple
 - More sophisticated change adaptation mechanisms exist in the literature [BG09; MSW22]
 - Different types of change might require different adaptation strategies

Backup

1. Investigate change severity

- Our results are better than for competitors but not perfect
- This can have various reasons
 - e definition of severity, subspace detection accuracy, experimental design, choice of encoder-decoder model
- Possible research: theoretical investigation of change severity, its influencing factors and ways to establish a ground truth
- 2. Detect gradual changes
 - So far, ABCD does not distinguish between gradual and abrupt changes
 - $\hfill \ensuremath{\,^\circ}$ Detecting gradual changes \rightarrow more detailed change characterization
 - Split ABCD's adaptive windows into smaller sub-windows
 - Check whether multiple sub-windows contain change points

Backup

Data Streams Deployed model = trainable model

Backup

Research Gap Decision-Making in Data Streams under Limited Feedback

Related fields combine:

- ML for data streams
- Unsupervised learning, semi-supervised learning, active learning, change detection, multi-armed bandits

Shortcomings

- 1. Unable to deal with complexity (change detectors that only work with univariate data, e.g., [BG07])
- 2. Do not take the cost of decisions into account (e.g. most multi-armed bandit algorithms [LS20])
- 3. Have difficulty dealing with continuous arrival of new data or concept drift (e.g., active learning, SSL) [Gom+23])
- 4. Are hard to deploy in real data streams (e.g., active learning, SSL) [Gom+23])

Backup

Related Work ω -UCB

	Policy	Туре	Compared
UCB types:	ε -first	_	×
	KUBE	-	×
united (u)	UCB-BV1	h	×
composite (c)	PD-BwK	с	×
hybrid (h)	Budget-UCB	h	\checkmark
	BTS	_	\checkmark
	MRCB	С	-
$UCB_{n} = \frac{average reward}{bcc} + uncertainty$	m-UCB	С	\checkmark
average cost	b-greedy	_	\checkmark
$\mu_{CR} = \frac{average reward + uncertainty}{average reward + uncertainty}$	c-UCB	h	\checkmark
average cost - uncertainty	i-UCB	u	\checkmark
	UCB-SC+	u	\checkmark
	UCB-B2	u	\checkmark
Backup			

Existing decision trees focus on:

- feedback efficiency (EFDT) [MWS18; MSW22]
- adaptivity to concept drift [HSD01; BG09; GFR06; WLH12; MSW22]
- statistical foundation [Rut+13; Rut+14a; Rut+14b; Rut+15]
- semi-supervised learning [WLH12]
- fuzzy data [HY09; DMP21]
- stability [PHK07]

Backup

Related Work ABCD

Approach	Reference	Туре	R1	R2	R3
ADWIN	[BG07]	UV	\checkmark	_	_
SeqDrift2	[PSK14]	UV	\checkmark	-	-
kdq-Tree	[Das+06]	MV	\checkmark	-	\checkmark
PCA-CD	[Qah+15]	MV	\checkmark	-	\checkmark
IKS	[Rei+16]	MV	\checkmark	\checkmark	-
LDD-DSDA	[Liu+17]	MV	\checkmark	-	-
AdwinK	[FDK19]	MV	\checkmark	\checkmark	-
D3	[Göz+19]	MV	\checkmark	-	\checkmark
ECHAD	[Cec+20]	MV	\checkmark	-	\checkmark
IBDD	[SCM20]	HD	\checkmark	-	\checkmark
WATCH	[Fab+21]	HD	\checkmark	-	\checkmark
ABCD	ours	HD	\checkmark	\checkmark	\checkmark

R1: change detection

- R2: change subspace detection
- R3: Quantifying change severity
- UV: univariate data
- MV: multivariate data
- HD: high-dimensional data

References

Backup

Contributions Zooming out

Backup

ABCD Foundation

Change

- Data stream = sequence of observations $S = x_1, x_2, \ldots, x_t$
- Each x_i comes from a distribution F_i and is d-dimensional
- A change has occurred after t^* if $F_{t^*} \neq F_{t^*+1}$

Change Subspace

- Set of all dimensions $D = \{1, 2, \dots, d\}$
- Union of all $D' \subseteq D$ in which the joint distribution $F^{D'}$ changed
- and which do not contain a subspace D'' for which $F_{t^*}^{D''} \neq F_{t^*+1}^{D''}$

Change Severity

• Positive function Δ that quantifies the discrepancy between F_{t^*} and F_{t^*+1}

Backup

References

Chair for Information Systems

ABCD – Idea (1) Track information loss of dimensionality reduction

- Finding changes in high-dimensional data is hard!
 - Exponential number of subspaces, correlation changes, etc.
- Dimensionality reduction = encode data in fewer dimensions while minimizing information loss
- Concept changes \Rightarrow information loss increases

Backup

ABCD – Idea (1) Track information loss of dimensionality reduction

- Finding changes in high-dimensional data is hard!
 - Exponential number of subspaces, correlation changes, etc.
- Dimensionality reduction = encode data in fewer dimensions while minimizing information loss

■ Concept changes ⇒ information loss increases

Backup

ABCD – Idea (1) Track information loss of dimensionality reduction

- Finding changes in high-dimensional data is hard!
 - Exponential number of subspaces, correlation changes, etc.
- Dimensionality reduction = encode data in fewer dimensions while minimizing information loss
- Concept changes \Rightarrow information loss increases

Backup

ABCD – Idea (2) Learn a model of the data and detect if it becomes obsolete

Identification of changes

- Learn lower-dimensional model of the data
- Model encodes data in d' < d dimensions</p>
 - Encoder: $\phi : \mathbb{R}^d \to \mathbb{R}^{d'}$
 - Decoder: $\psi : \mathbb{R}^{d'} \to \mathbb{R}^{d}$
 - Reconstruction: $\bar{x}_i = \psi(\phi(x_i))$
- Loss *L_i* comes from some distribution *L*
 - $L_i = MSE(x_i, \overline{x}_i)$
- Detect changes in (L_1, L_2, \ldots, L_t)

References

Backup

ABCD – Idea (3) Change subspace and severity

Subspace

- Reconstruction is inaccurate in subspace D*
- Identify change subspace by examining which dimensions are poorly reconstructed

Severity

- After approximation of change subspace
- How severe was the change in the affected subspace?
- Does the reconstruction error correlate with the severity of the change?

References

Backup

Detecting changes in reconstruction error Adaptive windows

Advantages

Backup

- No need to specify window size
- Detection of changes at various time scales
- Larger amount of 'consistent' data available

Challenges

Runtime and memory

How can we maintain and evaluate an adaptive window efficiently?

23/35 13 02 2025 Decision-Making in Data Streams under Limited Feedback

Chair for Information Systems

References

Detecting changes in reconstruction error Stream aggregates

- We keep stream aggregates A_i
 - Derived from Welford's and Chan's algorithm [Wel62; CGL82] for online variance updating
- Update and derive mean loss and variance for any time interval in constant time
- Drop old aggregates without information loss

$$\bar{\mu}_{\tau+1,t} = \frac{1}{t-\tau} (t\bar{\mu}_{1,t} - \tau\bar{\mu}_{1,\tau}) \qquad ssd_{\tau+1,t} = ssd_{1,t} - ssd_{1,\tau} - \frac{\tau(t-\tau)}{t} \left(\bar{\mu}_{1,\tau} - \bar{\mu}_{\tau+1,t}\right)^2$$

Backup

Change Subspace and Severity

Change Subspace

- 1. Given change point t^*
- 3. Apply change score in *j*-th dimension
- 4. Thresholding of resulting value p_i to find D^*

Change Severity Δ is the normalized average loss $\bar{\mu}_{>t^*}^{D^*}$ observed in D^* after the change:

$$\Delta = \frac{\left|\bar{\mu}_{>t^*}^{D^*} - \bar{\mu}_{\le t^*}^{D^*}\right|}{\sigma_{\le t^*}^{D^*}}$$

Backup

ABCD Experiment Setup

Data streams

- 7 data streams (simulated using real world and synthetic data)
- 3 additional synthetic data streams to evaluate change subspace detection and severity estimation
- *d* ∈ [24, 1024]

Baselines

- We use Autoencoders, PCA, and Kernel-PCA as encoder-decoder models
- We compare against IBDD [Sou+21], ADWIN-K [FDK19], D3 [Göz+19], WATCH [Fab+21], and IKS [Rei+16]
- For each approach we evaluate a grid of hyperparameters

Precision and recall are based on:

- **TP:** Change detected before the next one.
- FN: Change not detected before the next one.
- FP: Change detected although no change occurred.

Metrics for subspace and severity:

- Subspace accuracy: treat membership of change subspace as binary classification
- Spearman ρ : correlation coefficient between severity in subspace and ground truth

Backup

Incremental Decision Trees Motivation

Decision Trees come with many benefits:

- They can handle mixed data
- They are interpretable
- They are popular choices in ensembles (e.g., Random Forest)
- They are robust to outliers
 - \Rightarrow Well suited for decision support systems

But how to build and maintain them in data streams?

 \Rightarrow Incremental decision trees

References

Backup

Incremental Decision Trees Motivation

Decision Trees come with many benefits:

- They can handle mixed data
- They are interpretable
- They are popular choices in ensembles (e.g., Random Forest)
- They are robust to outliers
 - \Rightarrow Well suited for decision support systems

But how to build and maintain them in data streams?

 \Rightarrow Incremental decision trees

References

Backup

PLASTIC Algorithm – Decision tree restructuring

- I-IV. Decouple the branches of the tree
 - V. Reorder each branch
 - VI. Re-build tree

Backup

0 0 0 0 0 Original (I) (II)(III)0 0 1 c ò h ć d 0 0 1 (IV) (V) (VI) 0 0 0 0 h Ċ Ó References

PLASTIC Algorithm – Decision tree restructuring

- I-IV. Decouple the branches of the tree
 - V. Reorder each branch

VI. Re-build tree

Backup

0 0 0 0 0 Original (I) (II)(III)0 0 c ò ć d 0 0 1 (IV) (V) (VI) 0 0 0 0 h Ċ Ó References

PLASTIC Algorithm – Decision tree restructuring

- I-IV. Decouple the branches of the tree
 - V. Reorder each branch
 - VI. Re-build tree

Backup

0 0 0 0 0 Original (I) (II)(III)0 0 ò ć d 0 0 1 (IV) (V) (VI) 0 0 0 0 h Ċ Ó References

PLASTIC Numerical and binary categorical splits

Numerical splits

- For numerical splits, split threshold ν^* typically changes
- \Rightarrow Adjust split threshold prior to restructuring
- \Rightarrow Remove unreachable subtree

Binary categorical splits (e.g., "color=green \Rightarrow go left")

We propose a set of transformations illustrated below

Experiments Setup and competitors

Experiments

1. Comparison with EFDT

- Evaluates the effect of decision tree restructuring
- Comparison of PLASTIC and EFDT
- We use our own implementation of EFDT (based on the same code as PLASTIC)

2. Comparison with HT, EFDT and EFHAT

- Evaluation against state of the art decision trees
- We add a simple adaptive version of PLASTIC called PLASTIC-A
 - Trains a background tree when accuracy drops
 - Replaces current tree once it is more accurate

Data streams

- 9 synthetic, 15 real-world data streams
- 200,000 instances on synthetic data
- Up to 15 million instances on real world data

Evaluation methodology

- Test-then-train evaluation
- Accuracy in sliding window of size 500 (synthetic data) and 1000 (real world data)

References

Backup

Experiments Comparison to EFDT (synthetic data)

- Graphs show difference in accuracy between PLASTIC and EFDT
- Shaded area shows maximum difference across experiment repetitions

Experiments Results on real-world data streams

	Approach	HT	EFDT	EFHAT	PLASTIC	PLASTIC-A	NoChange
•	RIALTO	24.2	37.8	42.3	49.2	47.4	0.0
λi –	SENSORS	15.8	38.2	42.7	48.1	47.1	0.1
$\langle \phi \rangle$	COVTYPE	68.3	77.4	79.6	82.1	81.3	95.1
	HARTH	79.5	86.5	89.2	88.3	90.9	99.9
	PAMAP2	58.4	94.5	98.3	96.6	98.6	99.9
	WISDM	65.6	80.6	89.0	82.6	93.1	99.9
1	Accuracy	64.8	74.2	76.4	76.7	77.8	61.4
₽,	Rank	4.21	3.71	2.50	2.29	2.29	
Ø	Runtime	61.8	110.6	198.6	141.6	175.0	27.1

Backup

B

References
Related work Existing UCB approaches have issues

The UCB for the reward-cost ratio should be

- as accurate as possible (UCB > expected value)
- as tight as possible

 \rightarrow but this is not the case.

Backup

References

32/35 13.02.2025 Decision-Making in Data Streams under Limited Feedback

Chair for Information Systems

Our Approach Asymmetric confidence interval (illustration)

$$\omega_{\pm}(\alpha) = \frac{B}{2A} \pm \sqrt{\frac{B^2}{4A^2} - \frac{C}{A}},$$

$$A = n + z^2 \eta, \quad B = 2n\bar{\mu} + z^2 \eta (M + m), \quad C = n\bar{\mu}^2 + z^2 \eta Mm,$$

References

Chair for Information Systems

Backup

Our Approach Asymmetric confidence interval (illustration)

• η : variance parameter ($\eta = 1 \rightarrow \text{Bernoulli random variable}$)

Backup

References

Our Approach Asymmetric confidence interval (illustration)

- Asymmetric CI (generalization of Wilson Score Interval [Wil27])
- η : variance parameter ($\eta = 1 \rightarrow \text{Bernoulli random variable})$

Backup

References

Theoretical Analysis Results (II)

Theorem (Instance-dependent regret bound (based on [Xia+17]))

Define $\tau_{B} = \lfloor 2B/\min_{k \in [K]} \mu_{k}^{c} \rfloor$ and Δ_{k} , $n_{k}^{*}(\tau_{B})$, and $\xi(\tau_{B}, \rho)$ as before. For any $\rho > 0$, the regret of ω -UCB is upper-bounded by

$$\begin{aligned} & \textit{Regret} \leq \sum_{k=2}^{K} \Delta_k \left(1 + n_k^*(\tau_B) + \xi(\tau_B, \rho) \right) + \mathcal{X}(B) \sum_{k=2}^{K} \Delta_k + \frac{2\mu_1^r}{\mu_1^c}, \\ & \mathcal{X}(B) \textit{ is in } \mathcal{O} \left(\frac{B}{\mu_{\min}^c} e^{-0.5B\mu_{\min}^c} \right). \end{aligned}$$

Theorem (Asymptotic regret)

The regret of ω -UCB is

$$\textit{Regret} \in \mathcal{O}\left(\textit{B}^{1-\rho}\right), \textit{ for } 0 < \rho < 1; \qquad \textit{Regret} \in \mathcal{O}(\log\textit{B}), \textit{ for } \rho \geq 1$$

Backup

where .

References