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Decision maker is responsible for selecting ads

Decision: which ad to show to users

Information: none / user information (e.g., age, gender)

Feedback: conversions, advertising costs

Ads

Budget
Reward

Displayed ad

Advertiser

Social network

Users
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Decision maker is responsible for smooth operation of
biofuel production plant

Decision: stop the plant or continue

Information: sensor readings (vibration, heat,
pressure, chemical compounds)

Feedback: Produced biofuel is of expected quality
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Human decision-making is prone to errors and bias [TK74]

⇒ Use decision support systems (DSS) to guide the decision maker
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Environment
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Traditional process:

1. Collect data

2. Apply supervised learning

Challenges:

Sequential data: New data only becomes available over time

Dynamic environments change over time, e.g., due to wear and tear or shifting user preferences

⇒ Main drivers of research on data streams [Bif+18]
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Data Stream
A data stream S is a possibly never-ending sequence of observations {(x1, y1), (x2, y2), . . . , (xt , yt), . . .} drawn from
an ordered set of data generating distributions {Sτ1,τ2 ,Sτ2,τ3 ,Sτ3,τ4 , . . .}, called concepts, such that

∀t ∈ [τi , τi+1) : (xt , yt)
iid∼ Sτi ,τi+1 .

ML algorithms for data streams should

Inspect each observation only once

Use limited amount of time and memory

Adapt to concept drift (change from one concept to another)
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Most algorithms for data streams assume plenty and cheap feedback

Many applications violate these assumptions

Decision-based feedback

Feedback only available for the
chosen decision

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑘𝑡 = 1
𝑘𝑡 = 2
𝑘𝑡 = 3
𝑘𝑡 = 4

Observation-based feedback

Feedback is only available for
some observations
Extreme case: unavailable
feedback

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

1
2
3
4

Costly feedback

Obtaining feedback comes at
a cost

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

1
2
3
4
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Limited Feedback

observation-based
Part II

Part I
decision-based
costly

unavailable
feedback

Part III

KDD ’24Budgeted
multi-armed bandits
with asymmetric
confidence intervals

Leveraging plasticity
in incremental
decision trees ECMLPKDD ’24

Adaptive Bernstein
change detector for
high-dimensional
data streams

Springer DAMI (2024)
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Next up
Part III — ABCD



Research question:
How to guide decision-making when no direct feedback from the environment is available?

Solution: Let the algorithm generate feedback!

Technical contributions:

ABCD, a change detection and characterization algorithm for high-dimensional data streams
“When”, “where”, and “how severely”

Formalization of change, change subspace, and change severity

Stream aggregates for adaptive windows
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reconstruction error
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time

dimension

time

reconstruction error

change score

change score = 2 exp

{
− n1(κε)

2

2(σ2
1+

1
3κMε)

}
+ 2 exp

{
− n2((1−κ)ε)2

2(σ2
2+

1
3 (1−κ)Mε)

}
H0: “two windows have the same mean”
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change point!

α
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After detecting a change:

1. Identify dimensions that changed the most
Apply change score to each dimension

2. Quantify change severity
Normalize loss in the change subspace

time

dimension

change scorethreshold
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Insights:

1. Precision is very high

2. Lower sensitivity than competitors

⇒ Which method to choose depends on the cost of FP
and FN

0.0

0.5

1.0
Precision

ABCD (ae)

ABCD (kpca)

ABCD (pca)
AdwinK D3

IBDD IKS
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Insights:

1. Both metrics are higher than for competitors

2. However, there is still room for improvement

⇒ First strides towards drift characterization
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Next up
Part II — PLASTIC



Research question:
How to improve feedback efficiency of widely used algorithms for decision support systems?

Solution: Improve incremental decision trees!

Technical contributions:

PLASTIC, a feedback-efficient incremental decision tree algorithm

Decision tree restructuring based on the concept of plasticity

PLASTIC-A, a change-adaptive version of PLASTIC
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Hoeffding Trees [DH00]

Feedback-inefficient but
accurate

Extremely Fast Decision Trees
[MWS18]

More feedback-efficient

but unreliable

subtree pruning

Data stream

HT
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Illustrative example on synthetic data
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Can we maintain EFDT’s fast learning but avoid the accuracy drops?
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In the left-most branch, any instance with attribute values = 0 and = 0 will arrive at
Hence, from the viewpoint of the leaf, ≡

0

0

0 1

10

0 1 ≡
0

0

PLASTIC revises splits by restructuring the affected subtree
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Restructuring avoids accuracy drops caused by subtree pruning in EFDT

Improvements in worst-case accuracy up to 50 % compared to EFDT
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Next up
Part I — ω-UCB



Research question:
How to optimize sequential decisions under budget constraints when feedback is costly and resources are limited?

Solution: Use budgeted multi-armed bandit algorithms!

Technical contributions:

ω-UCB, a budget-aware multi-armed bandit algorithm based on asymmetric confidence intervals

Derivation of asymmetric confidence intervals

Theoretical analysis and empirical evaluation
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Contribution
Sequential decision-making under budget constraints



Goal: Maximize the total reward until the
available budget runs out

While budget B not empty:

1. play one of K arms

2. observe reward and cost

3. adjust arm selection strategy

arm 1arm 1arm 2
reward cost

XX XX

arm 1 arm 2
reward cost

$8 $2

arm 2
reward cost

XX XX

arm 2 arm 3

Which arm should I choose next?
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Generic algorithm



Regret: Difference in reward compared to the optimal strategy

time time

regret

linear regret sublinear regret

→ algorithm does not learn → algorithm learns

regret
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Foundation
Regret



Best arm = arm with highest ratio between expected rewards and costs

play this arm!

arm k

reward-cost ratio

expected value
sample mean
confidence interval

1 2 3 4 5 6
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The UCB for the reward-cost ratio should be

as accurate as possible (UCB > expected value)

as tight as possible

→ but this is not the case in existing algorithms.

UCB =
average reward + uncertainty

average cost− uncertainty

Our core idea:

Use asymmetric confidence intervals

Tighten confidence intervals when variance is low (our
η-parameter, η = 1→ Bernoulli)

costs

rewards

1

1
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Goal: Maximize the total reward until the
available budget runs out

While budget B not empty:

1. play one of K arms
UCB sampling with asymmetric confidence intervals

2. observe reward and cost
Track mean and variance ⇒ ω∗-UCB

3. adjust arm selection strategy
Increase confidence intervals over time according
to α(t) = 1 −

√
1 − t−ρ

arm 1arm 1arm 2
reward cost

XX XX

arm 1 arm 2
reward cost

$8 $2

arm 2
reward cost

XX XX

arm 2 arm 3

Which arm should I choose next?
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Time-adaptive confidence intervals prevent elimination of best arm

reward-cost ratio

expected value
sample mean
confidence interval

elimination of best arm!
play this arm!

arm k1 2 3 4 5 6
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ω-UCB
Time-adaptive confidence interval



Regret =
∑

arms k regret increment · number of plays until TB

TB : number of plays until budget B is empty (← a random variable!)
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Theorem (Number of suboptimal plays)

With ω-UCB, the expected number of plays of a suboptimal arm k > 1 before time step τ , E[nk(τ)], is upper-bounded
by:

E[nk(τ)] ≤ 1 + n∗k (τ) + ξ(τ, ρ),

where

ξ(τ, ρ) = (τ − K )
(

2−
√

1− τ−ρ
)
−

τ∑
t=K+1

√
1− t−ρ,

n∗k (τ) =
8ρ log τ

δ2
k

max

{
ηr

kµ
r
k

1− µr
k

,
ηc

k (1− µc
k)

µc
k

}
, δk =

∆k

∆k +
1
µc

k

,

and K and ∆k are defined as before.
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Proof of sub-linear regret
Results (I)



Hyperparameter ρ controlls amount of exploration

ρ > 1 leads to logarithmic growth

ρ ≤ 1 leads to super-logarithmic growth
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On the right:

Regret over time

Insights:

1. ρ = 1 is too conservative in practice

2. Estimating η as in ω∗-UCB reduces regret

⇒ “Use ω∗-UCB with ρ = 1/4!”
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Most existing algorithms for decision making in data streams assume plenty and cheap feedback. My dissertation
addresses limited feedback from three perspectives:

Costly decision-based feedback⇒ ω-UCB (Sequential decision-making under budget constraints ) [Hey+24b]
Observation-based feedback⇒ PLASTIC (feedback-efficient incremental decision tree mining) [Hey+24c]
Unavailable feedback⇒ ABCD (characterizing change in high-dimensional data streams) [Hey+24a]

Additional materials

Complete source code available on GitHub (https://github.com/heymarco)
Released PLASTIC and ABCD as part of open-source projects (https://capymoa.org/)
Advertisementvideo and blogpost (by Vadim Arzamasov and me) showcasing ω-UCB
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Most existing algorithms for decision making in data streams assume plenty and cheap feedback. My dissertation
addresses limited feedback from three perspectives:

Costly decision-based feedback⇒ ω-UCB (Sequential decision-making under budget constraints ) [Hey+24b]
Observation-based feedback⇒ PLASTIC (feedback-efficient incremental decision tree mining) [Hey+24c]
Unavailable feedback⇒ ABCD (characterizing change in high-dimensional data streams) [Hey+24a]

Additional materials

Complete source code available on GitHub (https://github.com/heymarco)
Released PLASTIC and ABCD as part of open-source projects (https://capymoa.org/)
Advertisementvideo and blogpost (by Vadim Arzamasov and me) showcasing ω-UCB
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1. Contextual budgeted multi-armed bandits

So far, ω-UCB does not use context information

Context information can improve regret drastically

Example:
Use Gaussian process (GP) to model context-reward and context-cost relationship
Estimate parameters of confidence interval based on GP

2. Adapt ω-UCB to non-stationary environments

Monitor statistics for each arm
Use ABCD’s adaptive windows!

Adjust exploration strategy

Analyze regret theoretically
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1. Extend PLASTIC to the delayed-feedback setting

Feedback usually arrives with a delay

Use self-training to bridge the delay period

Update tree with true feedback once available

Restructuring is beneficial for this!

2. Improve change adaptability of PLASTIC-A

Current change-adaptation procedure is rather simple

More sophisticated change adaptation mechanisms exist in the literature [BG09; MSW22]

Different types of change might require different adaptation strategies
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1. Investigate change severity

Our results are better than for competitors but not perfect

This can have various reasons
definition of severity, subspace detection accuracy, experimental design, choice of encoder-decoder model

Possible research: theoretical investigation of change severity, its influencing factors and ways to establish a
ground truth

2. Detect gradual changes

So far, ABCD does not distinguish between gradual and abrupt changes

Detecting gradual changes→ more detailed change characterization

Split ABCD’s adaptive windows into smaller sub-windows

Check whether multiple sub-windows contain change points
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(x1, 𝑦1), (x2, 𝑦2), (x3, 𝑦3) (x4, ·)

update update update predict 𝑦4
𝑚0 𝑚1 𝑚2 𝑚3

𝑆 = { }
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Data Streams
Deployed model = trainable model



Related fields combine:

ML for data streams

Unsupervised learning, semi-supervised learning, active learning, change detection, multi-armed bandits

Shortcomings

1. Unable to deal with complexity (change detectors that only work with univariate data, e.g., [BG07])

2. Do not take the cost of decisions into account (e.g. most multi-armed bandit algorithms [LS20])

3. Have difficulty dealing with continuous arrival of new data or concept drift (e.g., active learning, SSL) [Gom+23])

4. Are hard to deploy in real data streams (e.g., active learning, SSL) [Gom+23])
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UCB types:

united (u)

composite (c)

hybrid (h)

UCBu =
average reward

average cost
+ uncertainty

UCBc =
average reward + uncertainty

average cost− uncertainty

Policy Type Compared

ε-first – ×
KUBE – ×
UCB-BV1 h ×
PD-BwK c ×
Budget-UCB h ✓
BTS – ✓
MRCB c –
m-UCB c ✓
b-greedy – ✓
c-UCB h ✓
i-UCB u ✓
UCB-SC+ u ✓
UCB-B2 u ✓
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Existing decision trees focus on:

feedback efficiency (EFDT) [MWS18; MSW22]

adaptivity to concept drift [HSD01; BG09; GFR06; WLH12; MSW22]

statistical foundation [Rut+13; Rut+14a; Rut+14b; Rut+15]

semi-supervised learning [WLH12]

fuzzy data [HY09; DMP21]

stability [PHK07]
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R1: change detection

R2: change subspace detection

R3: Quantifying change severity

UV: univariate data

MV: multivariate data

HD: high-dimensional data

Approach Reference Type R1 R2 R3

ADWIN [BG07] UV ✓ – –
SeqDrift2 [PSK14] UV ✓ – –
kdq-Tree [Das+06] MV ✓ – ✓
PCA-CD [Qah+15] MV ✓ – ✓
IKS [Rei+16] MV ✓ ✓ –
LDD-DSDA [Liu+17] MV ✓ – –
AdwinK [FDK19] MV ✓ ✓ –
D3 [Göz+19] MV ✓ – ✓
ECHAD [Cec+20] MV ✓ – ✓
IBDD [SCM20] HD ✓ – ✓
WATCH [Fab+21] HD ✓ – ✓
ABCD ours HD ✓ ✓ ✓
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full partial unavailable

observation-baseddecision-based

feedback efficient
supervised algorithms

Availability

Type

unsupervised
algorithms

Part IIPart I Part III

Cost
low high

MAB algorithms

too high

budgeted MAB
algorithms

supervised algorithms

low high
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Change

Data stream = sequence of observations S = x1, x2, . . . , xt

Each xi comes from a distribution Fi and is d-dimensional
A change has occurred after t∗ if Ft∗ ̸= Ft∗+1

Change Subspace

Set of all dimensions D = {1, 2, . . . , d}
Union of all D′ ⊆ D in which the joint distribution F D′

changed
and which do not contain a subspace D′′ for which F D′′

t∗ ̸= F D′′

t∗+1

Change Severity

Positive function ∆ that quantifies the discrepancy between Ft∗ and Ft∗+1
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Finding changes in high-dimensional data is hard!
Exponential number of subspaces, correlation changes, etc.

Dimensionality reduction = encode data in fewer dimensions while minimizing information loss
Concept changes⇒ information loss increases

Ak+1,t = ?

Before change After change

dim 1 dim 1

d
im

2

d
im

2
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Track information loss of dimensionality reduction
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Identification of changes

Learn lower-dimensional model of the data

Model encodes data in d ′ < d dimensions
Encoder: ϕ : Rd → Rd′

Decoder: ψ : Rd′ → Rd

Reconstruction: x̄i = ψ(ϕ(xi))

Loss Li comes from some distribution L
Li = MSE(xi , x̄i)

Detect changes in (L1, L2, . . . , Lt)

ϕ ψ

xi x̂i
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Subspace

Reconstruction is inaccurate in subspace D∗

Identify change subspace by examining which dimensions are poorly
reconstructed

Severity

After approximation of change subspace

How severe was the change in the affected subspace?

Does the reconstruction error correlate with the severity of the change?

ϕ ψ

xi x̂i
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Advantages

No need to specify window size
Detection of changes at various time scales
Larger amount of ‘consistent’ data available

Challenges

Runtime and memory

How can we maintain and evaluate an adaptive window efficiently?

Sliding window

Fixed reference window

Adaptive window

t
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We keep stream aggregates Ai

Derived from Welford’s and Chan’s algorithm [Wel62;
CGL82] for online variance updating

Update and derive mean loss and variance for any
time interval in constant time

Drop old aggregates without information loss

tτ

Aτ = (µ̂τ , ssdτ )

At = (µ̂t, ssdt)

Aτ+1,t = ?

A1, A2, . . . . . . , At

µ̄τ+1,t =
1

t − τ
(tµ̄1,t − τ µ̄1,τ ) ssdτ+1,t = ssd1,t − ssd1,τ −

τ(t − τ)

t
(µ̄1,τ − µ̄τ+1,t)

2
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Change Subspace

1. Given change point t∗

3. Apply change score in j-th dimension

4. Thresholding of resulting value pj to find D∗

Change Severity ∆ is the normalized average loss µ̄D∗

>t∗ observed in D∗ after the change:

∆ =

∣∣µ̄D∗

>t∗ − µ̄D∗

≤t∗

∣∣
σD∗
≤t∗
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Data streams
7 data streams (simulated using real world and synthetic data)
3 additional synthetic data streams to evaluate change subspace detection and severity estimation
d ∈ [24, 1024]

Baselines
We use Autoencoders, PCA, and Kernel-PCA as encoder-decoder models
We compare against IBDD [Sou+21], ADWIN-K [FDK19], D3 [Göz+19], WATCH [Fab+21], and IKS [Rei+16]
For each approach we evaluate a grid of hyperparameters

Precision and recall are based on:
TP: Change detected before the next one.
FN: Change not detected before the next one.
FP: Change detected although no change occurred.

Metrics for subspace and severity:
Subspace accuracy: treat membership of change subspace as binary classification
Spearman ρ: correlation coefficient between severity in subspace and ground truth

Backup References

25/35 13. 02. 2025 Decision-Making in Data Streams under Limited Feedback Chair for Information Systems

ABCD Experiment Setup



Decision Trees come with many benefits:

They can handle mixed data

They are interpretable

They are popular choices in ensembles (e.g., Random Forest)

They are robust to outliers

⇒Well suited for decision support systems

But how to build and maintain them in data streams?

⇒ Incremental decision trees
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I–IV. Decouple the branches of the tree

V. Reorder each branch

VI. Re-build tree
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Algorithm – Decision tree restructuring



I–IV. Decouple the branches of the tree

V. Reorder each branch

VI. Re-build tree
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Algorithm – Decision tree restructuring



Numerical splits

For numerical splits, split threshold ν∗ typically changes

⇒ Adjust split threshold prior to restructuring

⇒ Remove unreachable subtree

Binary categorical splits (e.g., “color=green⇒ go left”)

We propose a set of transformations illustrated below

binary – multiwaymultiway – binary binary – binary

=⇒ =⇒ =⇒ =⇒v∗ ¬v∗ vi vi

vi

vi¬vi ¬vi ¬vi
v∗ ¬v∗ ¬vi

v∗ vi ¬v∗v∗
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PLASTIC
Numerical and binary categorical splits



Experiments

1. Comparison with EFDT

Evaluates the effect of decision tree restructuring
Comparison of PLASTIC and EFDT
We use our own implementation of EFDT (based on
the same code as PLASTIC)

2. Comparison with HT, EFDT and EFHAT

Evaluation against state of the art decision trees
We add a simple adaptive version of PLASTIC
called PLASTIC-A

Trains a background tree when accuracy drops
Replaces current tree once it is more accurate

Data streams

9 synthetic, 15 real-world data streams
200,000 instances on synthetic data
Up to 15 million instances on real world data

Evaluation methodology

Test-then-train evaluation
Accuracy in sliding window of size 500 (synthetic data)
and 1000 (real world data)
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Experiments
Setup and competitors



Graphs show difference in accuracy between PLASTIC and EFDT
Shaded area shows maximum difference across experiment repetitions
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Experiments
Comparison to EFDT (synthetic data)



Approach HT EFDT EFHAT PLASTIC PLASTIC-A NoChange

RIALTO 24.2 37.8 42.3 49.2 47.4 0.0
SENSORS 15.8 38.2 42.7 48.1 47.1 0.1
COVTYPE 68.3 77.4 79.6 82.1 81.3 95.1

HARTH 79.5 86.5 89.2 88.3 90.9 99.9
PAMAP2 58.4 94.5 98.3 96.6 98.6 99.9
WISDM 65.6 80.6 89.0 82.6 93.1 99.9

. . .

Accuracy 64.8 74.2 76.4 76.7 77.8 61.4

Rank 4.21 3.71 2.50 2.29 2.29 –
Runtime 61.8 110.6 198.6 141.6 175.0 27.1

Backup References

31/35 13. 02. 2025 Decision-Making in Data Streams under Limited Feedback Chair for Information Systems

Experiments
Results on real-world data streams



The UCB for the reward-cost ratio should be

as accurate as possible (UCB > expected value)

as tight as possible

→ but this is not the case.

ω-UCB (ours)
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Related work
Existing UCB approaches have issues



ω±(α) =
B
2A

±
√√√√ B2

4A2 − C
A

,

A = n + z2η, B = 2nµ̄ + z2η(M + m), C = nµ̄2 + z2ηMm,

sample mean (n = 20)
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Our Approach
Asymmetric confidence interval (illustration)



Asymmetric CI (generalization of Wilson Score Interval [Wil27])

η: variance parameter (η = 1→ Bernoulli random variable)

η =
σ2

(1− µ)µ

sample mean (n = 20)
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Our Approach
Asymmetric confidence interval (illustration)



Asymmetric CI (generalization of Wilson Score Interval [Wil27])

η: variance parameter (η = 1→ Bernoulli random variable)
η =

σ2

(1− µ)µ

sample mean (n = 20)

sample mean (n = 20)
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Our Approach
Asymmetric confidence interval (illustration)



Theorem (Instance-dependent regret bound (based on [Xia+17]))

Define τB =
⌊
2B/mink∈[K ] µ

c
k

⌋
and ∆k , n∗k (τB), and ξ(τB, ρ) as before. For any ρ > 0, the regret of ω-UCB is

upper-bounded by

Regret ≤
K∑

k=2

∆k (1 + n∗k (τB) + ξ(τB, ρ)) + X (B)
K∑

k=2

∆k +
2µr

1

µc
1

,

where X (B) is inO
(

B
µc

min
e−0.5BµC

min

)
.

Theorem (Asymptotic regret)
The regret of ω-UCB is

Regret ∈ O
(
B1−ρ

)
, for 0 < ρ < 1; Regret ∈ O(log B), for ρ ≥ 1
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Theoretical Analysis
Results (II)
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