
Navigating Complex Machine Learning
Challenges in Streaming Data

ECML Tutorial 2024

Heitor Murilo Gomes1*, Marco Heyden2

Maroua Bahri3,4

https://heymarco.github.io/ecml24-streamingchallenges/

[1] Victoria University of Wellington, New Zealand, [2] KIT, Germany, [3] INRIA Paris, France,
[4] Sorbonne Université, France

* Corresponding author: heitor.gomes@vuw.ac.nz

https://nuwangunasekara.github.io/ijcai2024/

Pipelines

Traditional ML Pipelines

TrainingCleaning Preprocessing Deployment

Data

• Traditional ML Pipelines consist of well-defined, separate steps

• After training, model is deployed to make predictions

ML Pipelines for Data Streams

TrainingCleaning Preprocessing Deployment

• Traditional ML Pipelines consist of well-defined, separate steps

• After training, model is deployed to make predictions

• In data streams, there is no separate deployment phase

instance 𝑜𝑡

ML Pipelines for Data Streams

Training

Cleaning Preprocessing

• In data streams, there is no separate deployment phase

• Rather, one would deploy a pipeline as a trainable model that can predict at

any time

Prediction

Deployment

ෝ𝑦𝑡

𝑜𝑡

ML Pipelines for Data Streams

Test-then-train evaluation

For each new instance 𝑜𝑡:
• Clean and preprocess of 𝑜𝑡
• Predict label ො𝑦𝑡 // in the case of classification

• …

• Train model

Pipelines in CapyMOA

𝑜𝑡

• We separate the pipeline into two basic procedures

• Ensures flexibility and interoperability within CapyMOA ecosystem

ෝ𝑦𝑡

TrainingCleaning Preprocessing

Cleaning Preprocessing Prediction

pass_forward_predict → (x, y)

pass_forward → x

𝑜𝑡 , ෝ𝑦𝑡𝑜𝑡 , ෝ𝑦𝑡 𝑜𝑡 , ෝ𝑦𝑡

𝑜𝑡 𝑜𝑡 𝑜𝑡

Pipelines in CapyMOA

ෝ𝑦𝑡Cleaning Preprocessing Prediction

pass_forward_predict → (𝑜𝑡 , ො𝑦𝑡)

𝑜𝑡 , ො𝑦𝑡𝑜𝑡 , ො𝑦𝑡 𝑜𝑡 , ො𝑦𝑡

pass_forward_predict → (𝒐𝒕, ෝ𝒚𝒕)

• Each element in the pipeline takes as input (𝑜𝑡 , ො𝑦𝑡) and ouputs (𝑜𝑡 , ො𝑦𝑡)
• What happens within each pipeline element depends on its type

• For example: preprocessing → transforms 𝑜𝑡, prediction → classifier predicts ො𝑦𝑡

Pipelines in CapyMOA

Cleaning Preprocessing Prediction

pass_forward → 𝑜𝑡 , ො𝑦𝑡

pass_forward → 𝒐𝒕

• Each element in the pipeline takes as input 𝑜𝑡 and outputs 𝑜𝑡
• What happens within each pipeline element depends on its type

• For example: preprocessing → transforms 𝑜𝑡, classifier → trains on 𝑜𝑡

𝑜𝑡𝑜𝑡 𝑜𝑡

Pipelines
Adaptation to Concept Drift

Adaptation to Concept Drift
Data stream pipelines should offer ways to adapt to concept drift

• For example, one might want to reset a classifier after a change

This opens up several design choices, e.g.:

• Where in the pipeline to place drift detector? Multiple ones?

• How to facilitate drift adaptation?

• How to prepare input to drift detector? (can we maintain flexibility?)

time

accuracy

Adapt!

Adaptation to Concept Drift

𝑥𝑡

ෝ𝑦𝑡

TrainingCleaning Preprocessing

Cleaning Preprocessing Prediction
𝑥𝑡 , ෝ𝑦𝑡𝑥𝑡, ෝ𝑦𝑡 𝑥𝑡 , ෝ𝑦𝑡

𝑥𝑡 𝑥𝑡 𝑥𝑡

Where in the pipeline to place drift detector?

Adaptation to Concept Drift

𝑥𝑡

ෝ𝑦𝑡

TrainingCleaning Preprocessing

Cleaning Preprocessing Prediction

Usual location

Where in the pipeline to place drift detector?

Adaptation to Concept Drift
Where in the pipeline to place drift detector?

𝑥𝑡

ෝ𝑦𝑡

TrainingCleaning Preprocessing

Cleaning Preprocessing Prediction

But why not here? (e.g.,

when unsupervised)

Adaptation to Concept Drift

𝑥𝑡

ෝ𝑦𝑡

TrainingCleaning Preprocessing

Cleaning Preprocessing Prediction

Or even two? (e.g., one for input

distribution, one for accuracy

Where in the pipeline to place drift detector?

Adaptation to Concept Drift

• Our pipelines can facilitate all the discussed combinations

• We are still working on the drift adaptation feature, so stay tuned!

Adaptation to Concept Drift

Prediction
Drift

detection

𝑥𝑡, ෝ𝑦𝑡

• As part of a pipeline, input to drift detector pipeline element always (𝑥𝑡, ො𝑦𝑡)
• What if drift detector monitors accuracy (i.e., if 𝑦𝑡 = ො𝑦𝑡)? Or the correlation

between certain input features?

→ We don’t know. But we want to provide this flexibility!

How to prepare input to drift detector? (can we maintain flexibility?)

Adaptation to Concept Drift

→ Specify a function that prepares the input for the drift detector

def accuracy(instance, y_hat):

return int(y == y_hat)

detector = Adwin()

drift_pe = DriftDetectorPipelineElement(

detector=detector,

input_func=accuracy)

// Internally, the pipeline element runs:

input = self.input_func(instance, y_hat)

self.detector.update(input)

Classifier and Regressor Pipelines

𝑥𝑡

• Besides “abstract” pipelines, we also support classifier and regressor pipelines

• These pipelines implement predict and train and can thus be used like any

other classifier

ෝ𝑦𝑡

TrainingCleaning Preprocessing

Cleaning Preprocessing Prediction
𝑥𝑡 , ෝ𝑦𝑡𝑥𝑡, ෝ𝑦𝑡 𝑥𝑡 , ෝ𝑦𝑡

𝑥𝑡 𝑥𝑡 𝑥𝑡

Practical examples

ECML_2024_pipelines.ipynb

	Slide 1: Navigating Complex Machine Learning Challenges in Streaming Data ECML Tutorial 2024
	Slide 2: Pipelines
	Slide 3: Traditional ML Pipelines
	Slide 4: ML Pipelines for Data Streams
	Slide 5: ML Pipelines for Data Streams
	Slide 6: ML Pipelines for Data Streams
	Slide 7: Pipelines in CapyMOA
	Slide 8: Pipelines in CapyMOA
	Slide 9: Pipelines in CapyMOA
	Slide 10: Pipelines
	Slide 11: Adaptation to Concept Drift
	Slide 12: Adaptation to Concept Drift
	Slide 13: Adaptation to Concept Drift
	Slide 14: Adaptation to Concept Drift
	Slide 15: Adaptation to Concept Drift
	Slide 16: Adaptation to Concept Drift
	Slide 21: Adaptation to Concept Drift
	Slide 22: Adaptation to Concept Drift
	Slide 23: Classifier and Regressor Pipelines
	Slide 26: Practical examples

