Navigating Complex Machine Learning Challenges in Streaming Data

ECML Tutorial 2024

Heitor Murilo Gomes^{1*}, Marco Heyden² Maroua Bahri^{3,4} https://heymarco.github.io/ecml24-streamingchallenges/

* Corresponding author: heitor.gomes@vuw.ac.nz

Karlsruher Institut für Technologie

[1] Victoria University of Wellington, New Zealand, [2] KIT, Germany, [3] INRIA Paris, France, [4] Sorbonne Université, France

https://capymoa.org/

Concept Drifts

Evolving Stream Learning

- The world is dynamic... changes occur all the time

- These changes affect our machine learning models

There is nothing permanent except change.

Heraclitus

Evolving Stream Learning

- The world is dynamic... changes occur all the time
- These changes affect our machine learning models

Ideally, we would like to...

- **Detect, understand** and **react to changes** in the data
- (2) Learn new concepts without forgetting old concepts

Learn to classify new classes NEW! 36

Update model to accommodate for changes within existing classes

Still a 4, but it is different

Update model to accommodate for changes within existing classes

Forget that which is **no longer needed**

Some Examples

Update model to accommodate for changes within existing classes

Forget that which is no longer needed

May not be used anymore Related Research Areas / Jargon

Class Evolution (Stream Learning)

Class Incremental (Continual Learning)

Some Examples

Update model to accommodate for changes within existing classes

Forget that which is no longer needed

May not be used anymore Related Research Areas / Jargon

Class Evolution (Stream Learning)

Class Incremental (Continual Learning)

Concept Drift (Stream Learning)

Domain Incremental (Continual Learning)

Some Examples

Update model to accommodate for changes within existing classes

Forget that which is no longer needed

Related Research Areas / Jargon

Class Evolution (Stream Learning)

Class Incremental (Continual Learning)

Concept Drift (Stream Learning)

Domain Incremental (Continual Learning)

Class Evolution (Stream Learning)

Assumptions

Assumptions

Independent and identically distributed (iid)

Each data point in the stream comes from the same probability distribution & The values of one data point does not provide any information about the values of another data point

Assumptions

Independent and identically distributed (iid)

The presence of **Concept Drift (CD)** violates the **identically** distributed assumption

Different sub-populations (concepts) exist at different time intervals

Concept Drift Example

Concept drift example

Assume a simple classification problem

Two features (X0 and X1)

We can build a very simple **linear model** to separate the two classes!

An accurate model!

What if the data distribution changes?

An accurate model!

What if the data distribution changes?

An accurate model!

What can we do about CD?

Detect & Adapt (update the model)

The data distribution may change overtime

The data distribution may change overtime

Some questions:

- What data should we use to train the updated model?
- How do we detect changes?
- What can the detection algorithm observe?

Underperforming model

Updated model

Real x Virtual

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM computing surveys (CSUR)

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM computing surveys (CSUR)

Supervised vs. Unsupervised

- If labels are available, we can monitor metrics such as accuracy
- If accuracy decreases, update model

- If labels are unavailable, detecting accuracy changes takes a long time
- Use unsupervised concept drift detector to detect drifts in P(X)

ADaptive WINdow (ADWIN)

- Univariate
- data and a sliding window summarising recent data
- Statistical tests are used to compare the distribution over the two windows
 - Null hypothesis: the distributions are equal
 - A rejection of the null hypothesis indicates a significant difference between the distributions of these windows (i.e. signals a change has happened)

Window based methods rely on a window that sums up past

Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive windowing. SIAM international conference on data mining

ADaptive WINdow (ADWIN)

- Uses adaptive windows of variable size that are recalculated online according to the rate of observed change of data in the windows
- Window is **increased** when there is no change, and decreased when a change has been detected

Sliding window Fixed reference window Adaptive window

Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive windowing. SIAM international conference on data mining

Evaluation

if the accuracy goes up, then the detector works"

maybe it is just <u>randomly resetting the classifier</u>!

We must use specific metrics to evaluate a detector

Evaluating CD Detection

Common approach (proxy): "Attach the method to a classifier,

Time

Not necessarily the detector is successful in detecting changes,

Important: we need the ground-truth of drift location for some of these

Some Metrics:

- Mean Time between False Alarms (MTFA)
- Mean Time to Detection (MTD)
- And others: MDR, ARL, MTR, ...

Bifet, A. (2017). Classifier concept drift detection and the illusion of progress. In Artificial Intelligence and Soft Computing ICAISC, 2017

Evaluating CD Detection

Simulating CD

Univariate Drift

and after the drift." [Bifet et al, 2011]

"Model a concept drift event as a weighted combination of two **pure distribution** that characterizes the target concepts before

[Bifet et al, 2011] Bifet, A., & Kirkby, R. (2011). Data stream mining a practical approach. Chapter 2.7.1

Multivariate Drift

- How can we simulate drift in multivariate data?
- Useful when evaluating unsupervised drift detectors

Process:

- Let a subset of classes define each concept
- New concept begins when classes change
- Don't show the labels to the drift detector!
- → Known change points, drifts of varying difficulty, "complex" drifts

- ariate data? ed drift detectors
- n concept change etector!

Practical example

03_ECML_2024_drift.ipynb