
Navigating Complex Machine Learning
Challenges in Streaming Data

ECML Tutorial 2024

Heitor Murilo Gomes1*, Marco Heyden2

Maroua Bahri3,4

https://heymarco.github.io/ecml24-streamingchallenges/

[1] Victoria University of Wellington, New Zealand, [2] KIT, Germany, [3] INRIA Paris, France,
[4] Sorbonne Université, France

* Corresponding author: heitor.gomes@vuw.ac.nz

https://nuwangunasekara.github.io/ijcai2024/

Classification algorithms

Hoeffding Tree*

Goal: Grow a decision tree incrementally

This means that after every new training instance,

the tree may grow

Key question: When should a split happen?

Hypothesis: A small sample is often enough to choose a near

optimal split decision

* Also known as Very Fast Decision Tree (VFDT)

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In ACM SIGKDD.

Hoeffding Bound

It is a statistical inequality that provides a theoretical

guarantee on the convergence of sample averages to the true

mean with a high probability

In other words, the Hoeffding Bound helps in determining

whether the observed differences in the attributes’ merit

(purity) are statistically significant or merely due to random

variation

Wassily Hoeffding (1963) Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, 58:301, 13-30, DOI: 10.1080/01621459.1963.10500830

Hoeffding Bound

When should we split a node?

Let 𝑋1 and 𝑋2 be the top 2 most informative

attributes*

Is 𝑋1 a stable option?

Hoeffding bound, split on 𝑋1 if 𝐺(𝑋1) −
𝐺(𝑋2) > 𝜖

Where 𝐺(∗) is a purity measure

(e.g. Gini index, Information gain)

* The top attributes to split, the ones that will cause the splits to be “purer”

Hoeffding Bound

When should we split a node?

Let 𝑋1 and 𝑋2 be the top 2 most informative

attributes*

Is 𝑋1 a stable option?

Hoeffding bound, split on 𝑋1 if 𝐺(𝑋1) −
𝐺(𝑋2) > 𝜖

Where 𝐺(∗) is a purity measure

(e.g. Gini index, Information gain)

𝜖 =
𝑅2ln1/𝛿

2𝑛

* The top attributes to split, the ones that will cause the splits to be “purer”

𝑅 = Range of observed random
variable

𝛿 = The desired probability of the
estimate not being within 𝜖 of its
expected value

𝑛 = Number of observed instances

Hoeffding Tree
wrap-up

- 𝜖 decreases with 𝑛 (or the more instances observed)

- HT builds a tree that converges to the tree built by a batch

learner given sufficiently large data

- A grace period can be used to avoid “splitting too fast”

- There are better options w.r.t. theoretical guarantees (See

McDiarmid Trees*), but HTs still works well in practice

* Rutkowski, L., Pietruczuk, L., Duda, P., & Jaworski, M. (2012). Decision trees for mining data streams based on the

McDiarmid's bound. IEEE Transactions on Knowledge and Data Engineering.

Other Streaming Decision Tree

algorithms

• The Extremely Fast Decision Tree (EFDT) [1] algorithm improves upon the

Hoeffding Tree by using a more relaxed criterion for splitting nodes, allowing it to

grow the tree more quickly.

• EFDT can revisit and revise earlier splits if better splits are found later, which

can lead to subtree pruning and potentially sudden drops in accuracy.

• PLASTIC [2] avoids EFDT's subtree pruning by restructuring the tree rather

than pruning it when revising splits.

• This allows PLASTIC to maintain accuracy by rearranging the tree structure

without discarding information

[1] Manapragada, Chaitanya, Geoffrey I. Webb, and Mahsa Salehi. Extremely fast decision tree. ACM SIGKDD International, 2018

[2] M. Heyden, H. M. Gomes, E. Fouché, B. Pfahringer, and K. Bohm. Leveraging Plasticity in Incremental Decision Trees. ECML-PKDD, [To Appear] 2024

Streaming Data session, 11:00am, Thursday

Bagging

Bootstrap Aggregating

Bagging trains each model of the ensemble

with a bootstrap sample from the original

dataset.

Every bootstrap contains each original sample

K times, where Pr(K=k) follows a binomial

distribution.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.

Bagging

Original Data

Bagging

Sampling with

replacement

Original Data

Subsample 1

Subsample 2

Subsample 3

Bagging

Sampling with

replacement

Original Data

Subsample 1

Subsample 2

Subsample 3

Model 1

Model 2

Model 3

Build the models

Bagging

On average for each subsample:

~64% of the instances are from the original dataset

~37% are repeated instances

~37% of the original instances are not present*

* Out-Of-Bag (OOB)
Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.

Bagging

The predictions of each learner are aggregated

using majority vote to obtain the final prediction.

Model 1 Model 3Model 2

Prediction=0 Prediction=0Prediction=1

Ensemble

Prediction=0

Prediction for a given instance X…

Online Bagging

• We cannot apply Bagging directly to data streams…

• Unfeasible to store all data before creating each bootstrap

subsample

We need to build the subsamples online

N. Oza and S. Russel “Online bagging and boosting” Artificial Intelligence and Statistics, 2001

Online Bagging

• Given a dataset with N samples

• In Bagging, every bootstrap contains each original sample

K times, where Pr(K=k) follows a binomial distribution

• Oza and Russel found out that for large N, the binomial

distribution tends to a Poisson(1) distribution

• Online Bagging instead of sampling with replacement, gives

each example a weight according to Poisson(1) distribution

N. Oza and S. Russel “Online bagging and boosting” Artificial Intelligence and Statistics, 2001

Online Bagging

N. Oza and S. Russel “Online bagging and boosting” Artificial Intelligence and Statistics, 2001

17

Practical effect: train learners

with different subsets of

instances.

… (xt,yt) …stream

k “weight” train(λ=1)

Subsamples

Batch bagging

~64% from the original dataset

~37% are repeated

~37% are not present

Adaptive Random Forest (ARF)

Streaming version of the original Random Forest by Breiman

Uses a variation of the Hoeffding Tree

Main differences:

 Online bagging, base learner & detectors

Overview:
1. Online bagging
2. Random subset of features
3. Drift detector for each tree

Breiman, L. (2001). Random forests. Machine learning.

Gomes, H. M., Bifet, A., Read, J., …, T. (2017). Adaptive random forests for evolving data stream classification. Machine Learning.

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In ACM SIGKDD.

ARF: Detect and Adapt

• One Warning and one Drift detector per base model

• Relies on the Adaptive WINdow (ADWIN) algorithm for

detection (other algorithms could be used)

• Background learners are started once a warning is

detected, their subspace of features may not correspond to

the subspace of features used by the “foreground” learner.

• Once a drift is detected, the background learner replaces

the “foreground” learner.

Boosting and Gradient Boosting

• XGBoost and CatBoost are popular batch gradient

boosting methods

• One key challenge when adapting such algorithms other

than a stream setting includes concept drift recovery

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD. ACM, 2016.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. NeurIPS.

Boosting on Streams

• [2001] OzaBoost [1] uses weights from a Poisson(1) distribution to

train multiple times using a given instance (similar to Online Bagging)

• [2012] Online Smooth Boost [2] is analogous to batch

SmoothBoost, thus it uses a smooth distribution for weight

assignment

• [2020] Gradient boosted AXGB [3] use Mini-batch trained XGBoost

as its base learners and adjusts the booster when concept drifts are

detected by ADWIN

• [2024] Streaming Gradient Boosted Trees (SGBT) [4] performs

better than bagging-based stream learners

[1] N. Oza and S. Russel “Online bagging and boosting” Artificial Intelligence and Statistics, 2001

[2] Chen, Shang-Tse, Hsuan-Tien Lin, and Chi-Jen Lu. "An online boosting algorithm with theoretical justifications." International Conference on International Conference on Machine Learning. 2012.

[3] Montiel, J., Mitchell, R., Frank, E., Pfahringer, B., Abdessalem, T., Bifet, A.: Adaptive xgboost for evolving data streams. In: 2020 IJCNN

[4] Gunasekara, N., Pfahringer, B., Gomes, H., & Bifet, A. (2024). Gradient boosted trees for evolving data streams. Machine Learning, 113(5), 3325-3352.

Regression algorithms

Adaptive Random Forest

Regression

• Similar to ARF for

classification

• builds regression

trees

• for prediction, uses

mean of predictions

(by each tree)

Gomes HM, Barddal JP, Ferreira LEB, Bifet A (2018) Adaptive random forests for data stream regression. ESANN

Self-Optimizing k-Nearest Leaves (SOKNL)

• Extends Adaptive Random Forest Regression

• Generates a representative data point (centroid) in each leaf by

compressing information from all instances in that leaf

• During prediction, calculates distances between input instance and

centroids for relevant leaves

• Uses only k leaves with smallest distances for prediction

• Dynamically tuning k values based on historical information

Yibin Sun, B Pfahringer, H M Gomes, and A Bifet. "SOKNL: A novel way of integrating K-nearest neighbours with adaptive random forest regression for data streams"

Data Mining and Knowledge Discovery (2022)

Yibin Sun, B Pfahringer, H M Gomes, and A Bifet. "SOKNL: A novel way of integrating K-nearest neighbours with adaptive random forest regression for data streams"

Data Mining and Knowledge Discovery (2022)

Self-Optimizing k-Nearest Leaves (SOKNL)

Prediction Intervals

Prediction Intervals

Prediction Intervals (PIs) are very useful improve our

confidence in predictions yield in regression tasks

Challenge

Traditional PI methods were not designed to adapt to evolving

streams (i.e. those with concept drift)

TIME / INSTANCE

TARGET

Instance

Prediction

Intervals

Prediction Interval

TIME / INSTANCE

TARGET

Instance

Prediction

Intervals

Interval Width (Length)

Prediction Interval

TIME / INSTANCE

TARGET

Instance

Prediction

Intervals

Interval Width (Length)

Mean and Variance Estimation (MVE)

𝐺−1(0, 𝛾) × 𝜎𝜖

TIME / INSTANCE

TARGET

Instance

Prediction

Intervals

Interval Width (Length)

Mean and Variance Estimation (MVE)

𝐺−1(0, 𝛾) × 𝜎𝜖

Inverse Gaussian with 0 mean and probability𝛾

Std of Predictive Residuals

Mean and Variance Estimation (MVE)

𝛾 : Confidence Level / Significance Level

Adaptive Prediction Interval (AdaPI)

𝒮 : Scalar

Yibin Sun, B Pfahringer, H M Gomes, and A Bifet. "Adaptive Prediction Interval for Data Stream Regression.” PAKDD (2024)

𝛾 : Confidence Level / Significance Level

Scalar for AdaPI

Yibin Sun, B Pfahringer, H M Gomes, and A Bifet. "Adaptive Prediction Interval for Data Stream Regression.” PAKDD (2024)

Evaluation Metrics for PI

Expansion Case

Blue area: AdaPI Red area: MVE

Datasets: Bike

Yibin Sun, B Pfahringer, H M Gomes, and A Bifet. "Adaptive Prediction Interval for Data Stream Regression.” PAKDD (2024)

Shrinkage Case

Blue area: AdaPI Red area: MVE

Datasets: MetroTraffic

Yibin Sun, B Pfahringer, H M Gomes, and A Bifet. "Adaptive Prediction Interval for Data Stream Regression.” PAKDD (2024)

Switching Case

Blue area: AdaPI Red area: MVE

Datasets: Abalone

Yibin Sun, B Pfahringer, H M Gomes, and A Bifet. "Adaptive Prediction Interval for Data Stream Regression.” PAKDD (2024)

Dealing with Drifts

Datasets: HyperA

Yibin Sun, B Pfahringer, H M Gomes, and A Bifet. "Adaptive Prediction Interval for Data Stream Regression.” PAKDD (2024)

Prediction Intervals Summary

Prediction Interval (PI) is essential for uncertainty quantification in regression

tasks.

Challenges

Traditional PI methods are not suitable for dynamic data streams.

Solution

Mean and Variance Estimation (MVE); ADAPI*

Evaluation

Coverage

Normalised Mean Prediction Interval Width (NMPIW)

Yibin Sun, B Pfahringer, H M Gomes, and A Bifet. "Adaptive Prediction Interval for Data Stream Regression.” PAKDD (2024)

Practical examples

02_ECML2024_supervised.ipynb

	Slide 1: Navigating Complex Machine Learning Challenges in Streaming Data ECML Tutorial 2024
	Slide 2: Classification algorithms
	Slide 3: Hoeffding Tree*
	Slide 4: Hoeffding Bound
	Slide 5: Hoeffding Bound
	Slide 6: Hoeffding Bound
	Slide 7: Hoeffding Tree wrap-up
	Slide 8: Other Streaming Decision Tree algorithms
	Slide 9: Bagging
	Slide 10: Bagging
	Slide 11: Bagging
	Slide 12: Bagging
	Slide 13: Bagging
	Slide 14: Bagging
	Slide 15: Online Bagging
	Slide 16: Online Bagging
	Slide 17: Online Bagging
	Slide 18: Subsamples
	Slide 19: Adaptive Random Forest (ARF)
	Slide 20: ARF: Detect and Adapt
	Slide 21: Boosting and Gradient Boosting
	Slide 22: Boosting on Streams
	Slide 23: Regression algorithms
	Slide 24: Adaptive Random Forest Regression
	Slide 25: Self-Optimizing k-Nearest Leaves (SOKNL)
	Slide 26: Self-Optimizing k-Nearest Leaves (SOKNL)
	Slide 27: Prediction Intervals
	Slide 28: Prediction Intervals
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Prediction Intervals Summary
	Slide 42: Practical examples

