
Navigating Complex Machine Learning
Challenges in Streaming Data

ECML Tutorial 2024

Heitor Murilo Gomes1*, Marco Heyden2

Maroua Bahri3,4

https://heymarco.github.io/ecml24-streamingchallenges/

[1] Victoria University of Wellington, New Zealand, [2] KIT, Germany, [3] INRIA Paris, France,
[4] Sorbonne Université, France

* Corresponding author: heitor.gomes@vuw.ac.nz

https://nuwangunasekara.github.io/ijcai2024/

Heitor Murilo Gomes

Senior lecturer at the Victoria University of
Wellington (VuW) in New Zealand. Before
joining VuW, Heitor was co-director of the AI
Institute at the University of Waikato.
PI for a few research projects ranging from
applied to fundamental research (i.e. ML for
energy distribution, novel SSL approaches
for DS, …).

Leads the capymoa open source library for
data stream learning, and provide support
for MOA (Massive On-line Analysis).

https://heitorgomes.com/

Marco Heyden

Marco is a research scientist and PhD
student in the field of machine learning and
data mining at Karlsruhe Institute of
Technology. He focus on learning from
sequential data, specifically the intersection
between data stream mining and decision
making under uncertainty.

Marco is a core developer of the open
source project capymoa, responsible for
several algorithms and the pipeline API

https://heymarco.github.io/

Maroua is an Associate Professor of
Computer Science at LIP6, Sorbonne
Université. Until August 2024, she was a
researcher with the MiMove team at INRIA
Paris, where she continues to serve as a
scientific collaborator. She earned her PhD
in Computer Science from Télécom Paris -
Institut Polytechnique de Paris. Her research
interests concern machine learning,
specifically data stream mining,
summarization techniques, and AutoML.

Maroua is a core developer providing advice
and support for capymoa

https://sites.google.com/site/bahrimarouaa

Maroua Bahri

https://heitorgomes.com/
https://albertbifet.com/
https://albertbifet.com/

Our goals

• Introduce attendees to several machine-
learning tasks for streaming data, such as:

Classification, regression, prediction intervals, concept drifts,
partially and delayed streams, clustering, anomaly detection

• Discuss the challenges pertaining streaming
pipelines and AutoML

• Finally, enable attendees to apply and
extend the concepts demonstrated using
Python and capymoa

Outline

• Machine Learning for Streaming Data (intro)
01_ECML2024_introduction.ipynb

• Learning cycle

• Evaluation

• capymoa

• Supervised Learning
02_ECML2024_supervised.ipynb

• Classification

• Regression

• Prediction Intervals

• Concept drifts

03_ECML2024_drift.ipynb

• Simulation, Detection & Evaluation

• Streaming Pipelines

04_ECML2024_pipelines.ipynb

• Challenges and application

• AutoML

05_ECML_2024_automl.ipynb

• Challenges and application

• Other Topics
06_ECML_2024_other.ipynb

• Partially and delayed labeled streams

• Clustering

• Anomaly detection

Notebooks:

https://heymarco.github.io/ecml2

4-streamingchallenges/

https://nuwangunasekara.github.io/ijcai2024/
https://nuwangunasekara.github.io/ijcai2024/

Machine Learning for Streaming Data

Stream Learning

What are data streams?

Sequences of items, possibly infinite, each item having

a timestamp, and so a temporal order

Machine learning for streaming data

(or Stream learning)

Data items arrive one by one, and we would like to

build and maintain models, such as patterns or

predictors, of these items in real time (or near real time)

Stream Learning

What are data streams?

Sequences of items, possibly infinite, each item having

a timestamp, and so a temporal order

Machine learning for streaming data

(or Stream learning)

Data items arrive one by one, and we would like to

build and maintain models, such as patterns or

predictors, of these items in real time (or near real time)

Stream Learning: Examples

Sensor data (IoT): energy demand prediction,

environmental monitoring, traffic flow

Marketing and e-commerce: product

recommendation, click stream analysis, sentiment

analysis (social networks)

Cybersecurity: malware detection, spam detection,

intrusion detection

And many more!*

* Not every problem should be treated as a stream learning problem!

Stream Learning

When should we abstract the data as a

continuous stream?

Stream Learning

When should we abstract the data as a

continuous stream?

can’t store all the data; or

shouldn’t store all the data

Stream Learning: can’t store

Storing all the data may exceed the

available storage capacity or cause

practical limitations

The volume or velocity of incoming

data may be too high to store and

process in its entirety

Stream Learning: shouldn’t

store

Storing all the data may not be desirable

due to privacy concerns, compliance

requirements, or the nature of the

problem

For example, if we are only interested in

real-time analysis or immediate

decision-making

Stream Learning

Using a stream abstraction, we can

process the data incrementally,

focusing on the most recent or

relevant data points, and discard or

aggregate the older data as needed

Stream Learning

ML for Batch (“static”) data

vs.

ML for Streaming (“online”) data

ML for Batch data

X
0

y
0

X
1

y
1

X
2

y
2

X
3

y
3

X
4

y
4

X
5

y
5

X
k

y
k

X
n

y
n

…

… … …

Fixed size dataset

Random access to any
instance

Well-defined phases
(Train, Validation, Test)

Challenges
noise, missing data,
imbalance, high
dimensionality, …

ML for Streaming data

X
0

y
0

X
1

y
1

X
2

y
2

X
k

y
k

X
n

y
n

…

…

…

…

Continuous flow of data

Limited time to inspect
data points

Interleaved phases
(Train, Validation, Test)

Challenges
Concept drifts, concept
evolution, strict
memory/processing
requirements, may more
and…

T
im

e

inherit all those from batch

Batch vs. Streaming

Batch data

Streaming data

The output is a trainable model

The output is a trained model

The Learning Cycle

The Learning Cycle

1. Process an example at a time,
and inspect it only once (at most)

2. Use a limited amount of memory

3. Work in a limited amount of time

4. Be ready to predict at any point

Bifet, A., Gavalda, R., Holmes, G., & Pfahringer, B. (2017). Machine learning for data streams: with practical examples in MOA. MIT press.

Requirements

The Learning Cycle

1. Process an example at a time,
and inspect it only once (at most)

2. Use a limited amount of memory

3. Work in a limited amount of time

4. Be ready to predict at any point

Bifet, A., Gavalda, R., Holmes, G., & Pfahringer, B. (2017). Machine learning for data streams: with practical examples in MOA. MIT press.

Requirements

The Learning Cycle

1. Process an example at a time,
and inspect it only once (at most)

2. Use a limited amount of memory

3. Work in a limited amount of time

4. Be ready to predict at any point

Bifet, A., Gavalda, R., Holmes, G., & Pfahringer, B. (2017). Machine learning for data streams: with practical examples in MOA. MIT press.

Requirements

The Learning Cycle

1. Process an example at a time,
and inspect it only once (at most)

2. Use a limited amount of memory

3. Work in a limited amount of time

4. Be ready to predict at any point

Bifet, A., Gavalda, R., Holmes, G., & Pfahringer, B. (2017). Machine learning for data streams: with practical examples in MOA. MIT press.

Requirements

Evaluation

Evaluation overview

Aspects concerning predictive performance evaluation:

- Evaluation metrics: How errors are considered?

- Evaluation framework: How past predictions influence the

current metric?

Other measurements (e.g. wall-clock time, CPU time, …)

Evaluation Framework

Cumulative (test-then-train): At any point during execution, we

observe the average over all instances seen so far

Windowed (prequential): Similar to cumulative, but we observe

the metrics over a window of the latest instances

Evaluation Framework (example)

In capymoa prequential_evaluation(…) will return both results

Algorithm Accuracy (cumulative)

HoeffdingAdapt. 84.6861

HoeffdingTree 81.6604

AdaptiveRand. 81.9076

PassiveAggr. 85.2445

Cumulative Windowed

CapyMOA
Machine learning
for data streams

https://capymoa.org/

https://github.com/adaptive-

machine-learning/CapyMOA

https://capymoa.org/
https://github.com/adaptive-machine-learning/CapyMOA
https://github.com/adaptive-machine-learning/CapyMOA

CapyMOA

A machine learning library for streaming data based on three pillars:

• Efficiency

• Interoperability

• Accessibility

capymoa is open-source and it was first publicly available on May 03, 2024

Other frameworks: MOA (java)1, river (python)2 and scikit-multiflow (python)3

[1] Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., & Seidl, T. (2010). Moa: Massive online analysis, a framework for stream classification and clustering.

In Workshop on applications of pattern analysis (pp. 44-50). PMLR.

[3] Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-output streaming framework. Journal of Machine Learning Research, 19(72), 1-5.

[2] Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A., Gomes, H.M., Read, J., Abdessalem, T. and Bifet, A., 2021.

River: machine learning for streaming data in python. Journal of Machine Learning Research, 22(110), pp.1-8.

Why? Efficiency

Reproducibility: https://github.com/adaptive-machine-learning/CapyMOA/blob/main/notebooks/benchmarking.py

Why? Accessibility

Easy to configure and execute complex experiments

Code in Python, but take advantage of MOA (Java) objects

Allows access to existing and future MOA implementations

Integrate stream simulation with evaluation and visualisation

Why? Accessibility
from capymoa.stream.generator import SEA

from capymoa.stream.drift import DriftStream, AbruptDrift,

GradualDrift

from capymoa.classifier import AdaptiveRandomForestClassifier

from capymoa.evaluation import prequential_evaluation

from capymoa.evaluation.visualization import plot_windowed_results

SEA3drifts = DriftStream(stream=[SEA(1),

 AbruptDrift(10000),

 SEA(2),

 GradualDrift(start=20000,

 end=25000),

 SEA(3),

 AbruptDrift(45000),

 SEA(1)])

arf =

AdaptiveRandomForestClassifier(schema=SEA3drifts.get_schema(),

 ensemble_size=100,

 number_of_jobs=4)

results = prequential_evaluation(stream=SEA3drifts,

 learner=arf,

 window_size=1000,

 max_instances=50000)

print(f"Cumulative accuracy = {results['cumulative'].accuracy()}")

print(f"wallclock = {results['wallclock']} seconds")

display(results['windowed'].metrics_per_window())

plot_windowed_results(results, ylabel=‘Accuracy')

Simulate a data stream with 3
concepts drifts

Why? Accessibility
from capymoa.stream.generator import SEA

from capymoa.stream.drift import DriftStream, AbruptDrift,

GradualDrift

from capymoa.classifier import AdaptiveRandomForestClassifier

from capymoa.evaluation import prequential_evaluation

from capymoa.evaluation.visualization import plot_windowed_results

SEA3drifts = DriftStream(stream=[SEA(1),

 AbruptDrift(10000),

 SEA(2),

 GradualDrift(start=20000,

 end=25000),

 SEA(3),

 AbruptDrift(45000),

 SEA(1)])

arf =

AdaptiveRandomForestClassifier(schema=SEA3drifts.get_schema(),

 ensemble_size=100,

 number_of_jobs=4)

results = prequential_evaluation(stream=SEA3drifts,

 learner=arf,

 window_size=1000,

 max_instances=50000)

print(f"Cumulative accuracy = {results['cumulative'].accuracy()}")

print(f"wallclock = {results['wallclock']} seconds")

display(results['windowed'].metrics_per_window())

plot_windowed_results(results, ylabel=‘Accuracy')

Configure an ensemble with 100
learners and 4 jobs (multithreaded)

Why? Accessibility
from capymoa.stream.generator import SEA

from capymoa.stream.drift import DriftStream, AbruptDrift,

GradualDrift

from capymoa.classifier import AdaptiveRandomForestClassifier

from capymoa.evaluation import prequential_evaluation

from capymoa.evaluation.visualization import plot_windowed_results

SEA3drifts = DriftStream(stream=[SEA(1),

 AbruptDrift(10000),

 SEA(2),

 GradualDrift(start=20000,

 end=25000),

 SEA(3),

 AbruptDrift(45000),

 SEA(1)])

arf =

AdaptiveRandomForestClassifier(schema=SEA3drifts.get_schema(),

 ensemble_size=100,

 number_of_jobs=4)

results = prequential_evaluation(stream=SEA3drifts,

 learner=arf,

 window_size=1000,

 max_instances=50000)

print(f"Cumulative accuracy = {results['cumulative'].accuracy()}")

print(f"wallclock = {results['wallclock']} seconds")

display(results['windowed'].metrics_per_window())

plot_windowed_results(results, ylabel=‘Accuracy')

Calculate cumulative and
windowed metrics

Why? Accessibility
from capymoa.stream.generator import SEA

from capymoa.stream.drift import DriftStream, AbruptDrift,

GradualDrift

from capymoa.classifier import AdaptiveRandomForestClassifier

from capymoa.evaluation import prequential_evaluation

from capymoa.evaluation.visualization import plot_windowed_results

SEA3drifts = DriftStream(stream=[SEA(1),

 AbruptDrift(10000),

 SEA(2),

 GradualDrift(start=20000,

 end=25000),

 SEA(3),

 AbruptDrift(45000),

 SEA(1)])

arf =

AdaptiveRandomForestClassifier(schema=SEA3drifts.get_schema(),

 ensemble_size=100,

 number_of_jobs=4)

results = prequential_evaluation(stream=SEA3drifts,

 learner=arf,

 window_size=1000,

 max_instances=50000)

print(f"Cumulative accuracy = {results['cumulative'].accuracy()}")

print(f"wallclock = {results['wallclock']} seconds")

display(results['windowed'].metrics_per_window())

plot_windowed_results(results, metric=‘accuracy’)Plot the windowed results

CapyMOA team

• Heitor Murilo Gomes (project leader)1

• Anton Lee1

• Nuwan Gunasekara2

• Yibin Sun2

• Guilherme Cassales2

• Marco Heyden3

• Justin Liu2

• Jesse Read4

• Maroua Bahri5

• Marcus Botacin6

• Vitor Cerqueira7

• Albert Bifet2,9

• Bernhard Pfahringer2

• Yun Sing Koh8

[1] Victoria University of Wellington, New Zealand

[2] University of Waikato, New Zealand

[3] KIT, Germany

[4] École polytechnique, IP Paris, France

[5] INRIA Paris, France

[6] Texas A&M Engineering, USA

[7] Porto University, Portugal

[8] University of Auckland, New Zealand

[9] Télécom Paris, IP Paris, France

And many other individual contributors

CapyMOA summary

• Code in Python or Java, or both

• Integration with PyTorch and scikit-learn

• Streams, learners and evaluation are
designed to interoperate with visualisation

• Latest release (0.7.0): August 03, 2024

• 20 classifiers, 8 regressors, 11 drift
detectors, 3 anomaly detectors, evaluation,
data representation, … as of 0.7.0

www.capymoa.org

http://www.capymoa.org/

Practical examples

01_ECML2024_introduction.ipynb

	Slide 1: Navigating Complex Machine Learning Challenges in Streaming Data ECML Tutorial 2024
	Slide 2: Heitor Murilo Gomes
	Slide 3: Our goals
	Slide 4: Outline
	Slide 5: Machine Learning for Streaming Data
	Slide 6: Stream Learning
	Slide 7: Stream Learning
	Slide 8: Stream Learning: Examples
	Slide 9: Stream Learning
	Slide 10: Stream Learning
	Slide 11: Stream Learning: can’t store
	Slide 12: Stream Learning: shouldn’t store
	Slide 13: Stream Learning
	Slide 14: Stream Learning
	Slide 15: ML for Batch data
	Slide 16: ML for Streaming data
	Slide 17: Batch vs. Streaming
	Slide 18: The Learning Cycle
	Slide 19: The Learning Cycle
	Slide 20: The Learning Cycle
	Slide 21: The Learning Cycle
	Slide 22: The Learning Cycle
	Slide 23: Evaluation
	Slide 24: Evaluation overview
	Slide 25: Evaluation Framework
	Slide 26: Evaluation Framework (example)
	Slide 27: CapyMOA Machine learning for data streams
	Slide 28: CapyMOA
	Slide 29: Why? Efficiency
	Slide 30: Why? Accessibility
	Slide 31: Why? Accessibility
	Slide 32: Why? Accessibility
	Slide 33: Why? Accessibility
	Slide 34: Why? Accessibility
	Slide 35: CapyMOA team
	Slide 36: CapyMOA summary
	Slide 37: Practical examples

