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Our goals

• Introduce attendees to several machine-
learning tasks for streaming data, such as: 

Classification, regression, prediction intervals, concept drifts, 
partially and delayed streams, clustering, anomaly detection

• Discuss the challenges pertaining streaming 
pipelines and AutoML

• Finally, enable attendees to apply and 
extend the concepts demonstrated using 
Python and capymoa



Outline

• Machine Learning for Streaming Data (intro) 
01_ECML2024_introduction.ipynb

• Learning cycle 

• Evaluation

• capymoa

• Supervised Learning
02_ECML2024_supervised.ipynb

• Classification

• Regression

• Prediction Intervals

• Concept drifts 

03_ECML2024_drift.ipynb

• Simulation, Detection & Evaluation

• Streaming Pipelines

04_ECML2024_pipelines.ipynb

• Challenges and application

• AutoML

05_ECML_2024_automl.ipynb

• Challenges and application

• Other Topics 
06_ECML_2024_other.ipynb

• Partially and delayed labeled streams

• Clustering

• Anomaly detection

Notebooks:

https://heymarco.github.io/ecml2

4-streamingchallenges/

https://nuwangunasekara.github.io/ijcai2024/
https://nuwangunasekara.github.io/ijcai2024/


Machine Learning for Streaming Data



Stream Learning

What are data streams?

Sequences of items, possibly infinite, each item having 

a timestamp, and so a temporal order

Machine learning for streaming data 

(or Stream learning)

Data items arrive one by one, and we would like to 

build and maintain models, such as patterns or 

predictors, of these items in real time (or near real time)
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Stream Learning: Examples

Sensor data (IoT): energy demand prediction, 

environmental monitoring, traffic flow

Marketing and e-commerce: product 

recommendation, click stream analysis, sentiment 

analysis (social networks)

Cybersecurity: malware detection, spam detection, 

intrusion detection

And many more!*

* Not every problem should be treated as a stream learning problem!



Stream Learning

When should we abstract the data as a 

continuous stream? 



Stream Learning

When should we abstract the data as a 

continuous stream? 

can’t store all the data; or

shouldn’t store all the data



Stream Learning: can’t store

Storing all the data may exceed the 

available storage capacity or cause 

practical limitations

The volume or velocity of incoming 

data may be too high to store and 

process in its entirety



Stream Learning: shouldn’t 

store

Storing all the data may not be desirable 

due to privacy concerns, compliance 

requirements, or the nature of the 

problem

For example, if we are only interested in 

real-time analysis or immediate 

decision-making



Stream Learning

Using a stream abstraction, we can 

process the data incrementally, 

focusing on the most recent or 

relevant data points, and discard or 

aggregate the older data as needed



Stream Learning

ML for Batch (“static”) data

vs. 

ML for Streaming (“online”) data



ML for Batch data
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Fixed size dataset

Random access to any 
instance

Well-defined phases 
(Train, Validation, Test)

Challenges 
noise, missing data, 
imbalance, high 
dimensionality, …



ML for Streaming data
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Batch vs. Streaming

Batch data

Streaming data

The output is a trainable model 

The output is a trained model 



The Learning Cycle



The Learning Cycle

1. Process an example at a time, 
and inspect it only once (at most)

2. Use a limited amount of memory

3. Work in a limited amount of time

4. Be ready to predict at any point

Bifet, A., Gavalda, R., Holmes, G., & Pfahringer, B. (2017). Machine learning for data streams: with practical examples in MOA. MIT press.

Requirements
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Evaluation



Evaluation overview

Aspects concerning predictive performance evaluation: 

- Evaluation metrics: How errors are considered?

- Evaluation framework: How past predictions influence the 

current metric? 

Other measurements (e.g. wall-clock time, CPU time, …)



Evaluation Framework

Cumulative (test-then-train): At any point during execution, we 

observe the average over all instances seen so far

Windowed (prequential): Similar to cumulative, but we observe 

the metrics over a window of the latest instances



Evaluation Framework (example)

In capymoa prequential_evaluation(…) will return both results

Algorithm Accuracy (cumulative)

HoeffdingAdapt. 84.6861

HoeffdingTree 81.6604

AdaptiveRand. 81.9076

PassiveAggr. 85.2445

Cumulative Windowed



CapyMOA
Machine learning 
for data streams

https://capymoa.org/

https://github.com/adaptive-

machine-learning/CapyMOA

https://capymoa.org/
https://github.com/adaptive-machine-learning/CapyMOA
https://github.com/adaptive-machine-learning/CapyMOA


CapyMOA

A machine learning library for streaming data based on three pillars:

• Efficiency

• Interoperability

• Accessibility

capymoa is open-source and it was first publicly available on May 03, 2024

Other frameworks: MOA (java)1, river (python)2 and scikit-multiflow (python)3

[1] Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., & Seidl, T. (2010). Moa: Massive online analysis, a framework for stream classification and clustering. 

In Workshop on applications of pattern analysis (pp. 44-50). PMLR.

[3] Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-output streaming framework. Journal of Machine Learning Research, 19(72), 1-5.

[2] Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A., Gomes, H.M., Read, J., Abdessalem, T. and Bifet, A., 2021. 

River: machine learning for streaming data in python.  Journal of Machine Learning Research, 22(110), pp.1-8.



Why? Efficiency

Reproducibility: https://github.com/adaptive-machine-learning/CapyMOA/blob/main/notebooks/benchmarking.py



Why? Accessibility

Easy to configure and execute complex experiments

Code in Python, but take advantage of MOA (Java) objects

Allows access to existing and future MOA implementations

Integrate stream simulation with evaluation and visualisation



Why? Accessibility
from capymoa.stream.generator import SEA

from capymoa.stream.drift import DriftStream, AbruptDrift, 

GradualDrift

from capymoa.classifier import AdaptiveRandomForestClassifier

from capymoa.evaluation import prequential_evaluation

from capymoa.evaluation.visualization import plot_windowed_results

SEA3drifts = DriftStream(stream=[SEA(1), 

                                  AbruptDrift(10000),

                                  SEA(2), 

                                  GradualDrift(start=20000, 

                             end=25000), 

                                  SEA(3), 

                                  AbruptDrift(45000),

                                  SEA(1)])

arf = 

AdaptiveRandomForestClassifier(schema=SEA3drifts.get_schema(), 

                                     ensemble_size=100, 

                                     number_of_jobs=4)

results = prequential_evaluation(stream=SEA3drifts, 

                                 learner=arf, 

                                 window_size=1000, 

                                 max_instances=50000)

print(f"Cumulative accuracy = {results['cumulative'].accuracy()}")

print(f"wallclock = {results['wallclock']} seconds")

display(results['windowed'].metrics_per_window())

plot_windowed_results(results, ylabel=‘Accuracy')

Simulate a data stream with 3 
concepts drifts



Why? Accessibility
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                                  SEA(2), 

                                  GradualDrift(start=20000, 

                             end=25000), 

                                  SEA(3), 
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arf = 

AdaptiveRandomForestClassifier(schema=SEA3drifts.get_schema(), 

                                     ensemble_size=100, 
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                                 max_instances=50000)

print(f"Cumulative accuracy = {results['cumulative'].accuracy()}")

print(f"wallclock = {results['wallclock']} seconds")

display(results['windowed'].metrics_per_window())

plot_windowed_results(results, ylabel=‘Accuracy')

Configure an ensemble with 100 
learners and 4 jobs (multithreaded)
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Calculate cumulative and 
windowed metrics
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CapyMOA summary

• Code in Python or Java, or both

• Integration with PyTorch and scikit-learn

• Streams, learners and evaluation are 
designed to interoperate with visualisation

• Latest release (0.7.0): August 03, 2024

• 20 classifiers, 8 regressors, 11 drift 
detectors, 3 anomaly detectors, evaluation, 
data representation, … as of 0.7.0

www.capymoa.org

http://www.capymoa.org/


Practical examples

01_ECML2024_introduction.ipynb
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